Unveiling the threat: Characterization of Clostridioides difficile Infection in the Northwest Region of Buenos Aires between 2019-2023 and Associated Risk Factors redefined through a Meta-Analysis ==================================================================================================================================================================================================== * Angela María Barbero * Nicolás Diego Moriconi * Sabina Palma * Josefina Celano * María Gracia Balbi * Lorenzo Sebastián Morro * María Martina Calvo Zarlenga * Jorgelina Suárez * María Guadalupe Martínez * Mónica Graciela Machain * Carlos Gabriel Altamiranda * Gabriel Erbiti * Rodrigo Emanuel Hernández Del Pino * Virginia Pasquinelli ## Abstract *Clostridioides difficile* stands as the leading cause of hospital acquired enteric infection in developed countries. In Argentina, the epidemiology of *Clostridioides difficile* infection (CDI) is currently poorly characterized. Therefore, we conducted a retrospective case-control study evaluating the prevalence of CDI in 249 stool samples collected between 2019 and 2023 in the Northwest region of Buenos Aires. The presence of *C. difficile* was detected by combining three techniques (EIA, PCR and toxigenic culture) in a diagnostic algorithm. Clinical and demographic data from patients was also analyzed to identify CDI-associated risk factors. 1 in 5 patients presented *C. difficile* as the etiological agent of diarrhea and the 80% of CDI+ cases carried toxigenic strains, most of which had been acquired in the community. Age ≥69 years, previous use of antibiotics, previous hospitalization and previous episodes of CDI emerged as predisposing factors for CDI in our study cohort. Blood parameters such as an elevated number of leukocytes and platelets, a decreased basophil count, and an increased urea concentration were identified as indicators of CDI. We also carried out a systematic review and a meta-analysis where we contrasted our results with 39 studies selected from different countries around the world. At the global level, the meta-analysis highlighted advanced age, previous consumption of antibiotics and previous hospitalization as CDI risk factors and the leukocyte count as an indicator of CDI. These results emphasize the importance of epidemiological studies and reveal crucial information for healthcare decision-making regarding CDI. ![Figure1](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F1.medium.gif) [Figure1](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F1) Keywords * *C. difficile* * epidemiology * risk factors * meta-analysis ## Introduction *Clostridioides difficile* infection (CDI) is considered as the most frequent hospital-acquired disease 1,2. Since 2019, the Centers for Disease Control (CDC) have identified *C. difficile* as an “urgent threat”, with the immediate need to implement prevention and control actions 3. *C. difficile* is a Gram positive, anaerobic and spore-forming bacterium that causes intestinal damage primarily through the production of two main toxins: toxin A (TcdA) and toxin B (TcdB) 4. These toxins play a crucial role in the pathogenesis of CDI by damaging the cells lining the gut. CDI can be life-threatening, ranging from mild diarrhea to pseudomembranous colitis and causing nearly 500,000 cases per year in the United States 5. CDI is also a major economic burden to the health care systems, which is closely linked to the high recurrence rates of this infection. Although standard treatments resolve CDI in most cases, up to 35% of CDI-treated patients will experiment a recurrence of the disease with aggravated symptoms 5. Common therapy for CDI includes antibiotics such as metronidazole for mild cases and vancomycin or fidaxomicin for moderate to severe cases 6. Therapies with the human antibody bezlotoxumab against *C. difficile* toxin B or Fecal Microbiota Transplant (FMT) to restore the balance of the microbiome have been recommended to treat or prevent recurrences 7,8. Regarding global epidemiology, while healthcare-associated CDI has declined in recent years, the incidence of community-acquired CDI is on the rise 9–14. The main transmission route for *C. difficile* is through direct Person-to-Person contact by the fecal-oral route 15. *C. difficile* spores constitute the main form of resistance and can persist in the environment for long periods 16,17. Then, contaminated surfaces, food or water, as well as asymptomatic carriers, are typical sources of community transmission 18–20. Several risk factors are associated with the development of CDI. The use of antimicrobials with emphasis on broad-spectrum antibiotics, has been described as the most significant risk factor for CDI 21,22. These antibiotics can disrupt the normal balance of bacteria in the gastrointestinal tract, generating dysbiosis and so allowing *C. difficile* overgrow in the gut. Hospitalization in healthcare facilities and advanced age, which can be related to weakened immune systems and a higher likelihood of residing in healthcare settings, also constitute important risk factors 22. The use of stomach acid regulators, such as proton pump inhibitors (PPIs) and H2 blockers, has been associated with an increased risk of CDI 23; however, this is still under debate. Previous episodes of CDI increase the risk of recurrence 24. Finally, several underlying health conditions that could compromise the immune system could contribute to increased susceptibility or severity of the infection. Comorbidities such as Inflammatory Bowel Disease (IBD) 25, Crohn’s disease 25, ulcerative colitis 25, diabetes 26 and chronic kidney disease (CKD) 27 can enhance the risk of CDI. Certain clinical procedures (e.g. chemotherapy treatments and gastrointestinal surgery), malnutrition or enteral nutrition, organ transplantation along with immunosuppressive medications and blood disorders may also elevate the risk of CDI 28,29. Understanding geographical variations in prevalence by studying CDI epidemiology and risk factors is essential for preventing, controlling, and managing the infection. In Latin America, and particularly in Argentina, comprehensive epidemiological data on CDI are limited. It has been reported that patients with diarrhea are not routinely tested for *C. difficile* in developing countries and, when tested, very often only the enzyme immunoassay (EIA) is used 30–32. This could lead to an underestimation in the diagnosis and high economic burdens for the health system. Our retrospective study (2019-2023) assesses the prevalence of *C. difficile* among health care centers of the Northwest region of Buenos Aires, Argentina. Furthermore, with the aim to characterize our study cohort, we analyzed the demographic and clinical data of the patients and we conducted a meta-analysis to compare our findings with global reports. ## Methodology ### Human Samples and Participating Institutions The research was carried out in accordance with the Declaration of Helsinki (2013) and approved by the UNNOBA (Universidad Nacional del Noroeste de la Provincia de Buenos Aires) Ethics Committee (COENOBA). Fecal samples from hospitalized adult patients with diarrhea were collected after obtaining informed consents and frozen at -20 °C until use. The samples were derived from the following health-care centers: Hospital Interzonal General de Agudos (HIGA) Abraham Félix Piñeyro, Clínica Centro Médico Privada SRL and Clínica IMEC. Samples received between January 1, 2019 and December 31, 2023 from Sanitary Region III of Buenos Aires, Argentina (Supplementary Fig. 1) were included in this analysis. ![Supplementary Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F7.medium.gif) [Supplementary Figure 1.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F7) Supplementary Figure 1. Sanitary Region Ill of Buenos Aires, Argentina. Sanitary region from the northwest of Buenos Aires province (Argentina) comprised of the municipalities of: Chacabuco, F. Ameghino, General Arenales, General Pinto, General Viamonte, Junin, Leandro N. Alem and Lincoln. ### Patients characterization The presence of *C. difficile* was determined in the fecal samples using a diagnostic algorithm (Supplementary Fig. 2) as recommended by Crobach et al. in 2016 33. Briefly, three tests were used in a retrospective approach: Enzyme immunoassay (EIA, CoproStripTM *C. difficile* GDH + Toxin A + Toxin B (Savyon® Diagnostics Ltd)), Polymerase Chain Reaction from stool samples (PCR, Taq Phire Tissue Direct PCR Master Mix (Thermo Fisher)) and Toxigenic culture (stool culture in CHROMAgarTM *C. difficile* plates + PCR from isolated *C difficile* colonies). ![Supplementary Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F8.medium.gif) [Supplementary Figure 2.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F8) Supplementary Figure 2. Diagnostic algorithm to determine C. *difficile* presence in stool samples. A cohort of 249 patients with gastrointestinal symptoms and diarrhea was evaluated. The presence of C. *difficile* within stool samples was ascertained by an algorithm that includes 3 tests (EIA, PCR, and toxigenic culture), accompanied by an exhaustive analysis of the patients’ medical records. This algorithm was designed based on Crobach et al. recommendations 1. GOH, glutamate dehydrogenase from C. difficile. Patients were defined as CDI+ or CDI- and clinical, demographic and blood parameters were evaluated **(Table 1)**. View this table: [Table 1.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/T1) Table 1. Clinical, demographic and blood parameters evaluated in CDI+ and CDI-patients. CDI classifications by setting of acquisition and severity were defined according to the Infectious Diseases Society of America (IDSA) criteria 34. ### Meta-analysis design A bibliographic search was carried out using PubMed and Google Scholar databases in addition to the AI SciSpace tool. The reports that fulfilled the definition criteria of cases and controls were selected. The meta-analysis workflow is summarized in **Fig. 4**. ### Statistical Analysis For clinical, demographic and blood parameters comparisons, parametric t-test or non-parametric Mann-Whitney test for unpaired samples were used. Fisher’s exact test was used to analyze the frequency distribution of qualitative/nominal variables. Data was analyzed using GraphPad Prism 8.0.1 software (San Diego, CA, USA) and p values <0.05 were considered statistically significant. For the meta-analysis, the “Metafor” package from RStudio (2023.06.1+524 version) was used 35. The Odds Ratio (OR, for categorical variables) and the Standardized Mean Difference (SMD, for continuous variables) were calculated and a REML (Random Effect Maximum Likelihood) model was employed. Models with a p value <0.05 were considered as potential predictors of CDI incidence risk. ## Results and Discussion ### CDI prevalence in Northwest Buenos Aires In Argentina, studies and reports on CDI are scarce and heterogeneous 36–39. In order to contribute to a better understanding of the disease, we conducted a retrospective analysis of 249 fecal samples received between 2019-2023 from Sanitary Region III of Buenos Aires. We determined *C. difficile* as the causal agent of one in five diarrheas (21.29%) (**Fig. 1 a)** and we detected that more than the 80% of the patients were infected with toxigenic strains; indicated by the presence of *C. difficile* Toxin B in the stool samples (**Fig. 1 b)**. This percentage was similar to the worldwide reported prevalence, where CDI is the underlying cause of 15 to 20% of diarrhea associated with the use of antibiotics 40. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F2.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F2) Figure 1. CDI prevalence in Northwestern Buenos Aires. 249 stool samples were evaluated using the diagnostic algorithm. a) Donut graph showing positive, negative and discordant results for the presence of *C. difficile*. b) Donut graph showing the percentage of toxigenic strains (presence of Toxin B) detected in the stool samples. c) CDI+ and CDI-results classified on an annual basis from 2019 to 2023. d) CDI classification. e) Origin of the CDI+ patients at the time of diagnosis. When analyzing the cases on an annual basis, the frequency of CDI ranged around 20% from 2019 to 2023 (**Fig. 1 c)**. Interestingly, the highest incidence in our study cohort was observed during 2020, duplicating the percentage of CDI+ cases compared to the rest of the years (**Fig. 1 c)**. In relation to this, the COVID-19 pandemic brought about the preventive use of broad-spectrum antibiotics to avoid bacterial coinfections; which could be associated with the increase in detection 41–44. Nevertheless, CDI detection could have been impacted by the decrease in the number of tests, a fact that was corroborated in multiple studies carried out during the early stages of the pandemic 45–47. Additionally, there could also be an underestimation of CDI cases 48,49 since SARS-CoV-2 frequently causes gastrointestinal symptoms similar to those of C*. difficile* 50. Regarding the severity of the diarrhea, all infected patients had a moderate classification (**Fig. 1 d)**. Importantly, the majority of CDI infections occurred in the community setting (**Fig. 1 e)**. 65.71% of the patients presented community-acquired CDI, 14.29% in geriatric institutions and only the remaining 20% occurred in a hospital environment (**Fig. 1 e)**. This is particularly notable, since the epidemiology of CDI has changed in the last two decades. The 027 strain, responsible for clinical outbreaks in the early 2000s 51, has recently decreased its incidence in part due fluoroquinolones restriction, prevention measures and to improvements in detection tests that have allowed a better characterization of the circulating ribotypes 52–56. Additionally, an increase in strains associated with community infection (e.g. 078, 014 in Europe and 106 in the US) has been reported in recent years, with community-acquired cases rising above 40% 11,57–59. ### Risk factors After classifying the patients as CDI+ or CDI-, we determined the risk factors that could be involved in the prevalence of CDI. As seen in **Fig. 2 a**, we found significant differences in the age of CDI+ and CDI-populations, with the CDI+ patients presenting a higher average age (CDI+: mean = 72 years vs. CDI-: mean = 65 years). By using a ROC curve analysis, we established a cut-off point of 69 years for advanced age as a risk factor in our cohort (**Fig. 2 b)**. Elderly patients have a greater probability of receiving broad-spectrum antibiotics, being hospitalized or staying longer in hospital settings partly due to the presence of comorbidities 60,61. ![Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F3.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F3) Figure 2. CDI associated risk factors. Evaluation of risk factors associated with CDI. a) Age (years), b) ROC curve to establish the age cut-off point, c) biological sex, d) prior antibiotics (ATB) consumption, e) prior hospitalization, f) prior CDI, g) antibiotic breakdown by family, h) prior PPI consumption, i) comorbidities, j) breakdown of specific comorbidities (the white number inside the bars represents the number of patients with the comorbidity). a) Mann-Whitney test. c, d, e, f, h, and i) Fisher’s exact test. Stacked bars represent the percentage of patients for each parameter. ns= non-significant; *, p With age, the immune system decreases its functions and also older individuals develop inflammageing, which could impact in the resolution of the infection; a fact that was observed for neutrophils 62 and serum IgG against *C. difficile* toxins 63–65. Regarding biological sex, no differences were found for the proportion of males and females between both patient populations (**Fig. 2 c)**. Consumption of antibiotics in the 3 months prior to the diagnosis of CDI, as well as previous hospitalizations and infections with *C. difficile*, could be considered risk factors that predisposes to CDI in our study cohort (**Fig. 2 d, e and f)**. Hospitals and healthcare facilities are common environments for *C. difficile* transmission since they can be easily colonized by spores that persist on surfaces for months 66,67. Previous consumption of antibiotics is directly related to the dysbiosis of the microbiota that enables the colonization of *C. difficile* and is typically consider as the main risk factor for CDI 68,69. Some antibiotics, such as clindamycin, broad-spectrum penicillins, cephalosporins and fluoroquinolones alter the microbiota to a greater extent than others 68,70,71. When analyzing the families of antibiotics consumed by CDI+ patients, we observed that 56.52% had taken some kind of penicillin prior to diagnosis (**Fig. 2 g)**. On the other hand, the consumption of proton pump inhibitors (PPI) prior to diagnosis and the presence of comorbidities did not show significant differences between CDI- and CDI+ patients (**Fig. 2 h and i)**. **Fig. 2 j** shows a breakdown of the comorbidities reported in the patients under study. Although they were analyzed individually, no substantial variations were found between the CDI+ and CDI-population for any of them. No differences were found regarding the variables referring to the evolution of patients during admission to health centers such as *hospitalization in common floor or ICU, need for ICU, shock and death* (Supplementary Fig. 3). ![Supplementary Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F9.medium.gif) [Supplementary Figure 3.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F9) Supplementary Figure 3. Clinical data from COi+ and COi-patients. After classifying the patients into COi+ or COi­ popuiations using the diagnostic algorithm, data from clinical records was evaluated. a) Type of hospitalization room b) requirement of ICU, c) diarrhea classification d) presence of shock, e) death, f) precedence of the patients, g) COi origin in both populations. ICU= Intensive Care Unit. HO= Hospital­ acquired COi. CO= Community-acquired COi. CO-HCFA= Community-acquired COi associated to hospital environments. a, b, c, d, e) Fisher’s exact test; f, g) Chi-square test with Kruskal Wallis test. ns= non-significant ### Blood and serum parameters We also analyzed the patients’ blood counts and serum parameters that were measured on the day of fecal sample collection. We observed a significant increase in the number of leukocytes (**Fig. 3 a)** and platelets (**Fig. 3 j)** in patients infected with *C. difficile*. When analyzing the count of lymphocytes, monocytes and neutrophils individually between both patient populations, although an increase was evident, we did not find significant differences (**Fig. 3 b, c and d)**. However, it is important to note that CDI+ patients had increased at least two of these leukocyte populations compared to CDI-patients at the time of diagnosis (**Fig. 3 e, f and g)**. Although some studies have highlighted that an elevated white blood cell (WBC) count is frequently observed in the context of CDI 72 73 74, little has been explored in using elevated WBC count as a predictor of this infection. In this regard, we agree with Vargas et al. 75 in that the total leukocyte count alone is not a specific indicator for CDI. Previous work evaluating platelet count in CDI episodes reported controversial results, assigning them both a beneficial and detrimental role in relation to clinical symptoms 76–85. We have recently shown that platelets bind to *C. difficile* and promote its uptake by human macrophages using macropinocytic pathways 86. Therefore, we consider that platelets in CDI could be fundamental for the resolution of the infection and that further studies are needed to unravel their role during CDI. ![Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F4.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F4) Figure 3. Blood and serum parameters in CDI+ and CDI-patients. Number of a) Leukocytes (cells/mm3), b) lymphocytes (cells/mm3), c) monocytes (cells/mm3), d) neutrophils (cells/mm3), e) lymphocytes plus monocytes (cells/mm3), f) lymphocytes plus neutrophils (cells/mm3), g) neutrophils plus monocytes (cells/mm3), h) basophils (cells/mm3), i) eosinophils (cells/mm3) and j) platelets (cells/mm3). Levels of k) creatinine (mg/dl), l) albumin (g/dl) and m) urea (mg/dl). n) BUN (blood urea nitrogen)/creatinine ratio. a-i and k-n) Mann-Whitney test. j) unpaired t test. Violin plots show the distribution of the data. ns= non-significant; *, p<0.05; **, p<0.01. Regarding the rest of the blood parameters evaluated, while a significant decrease in basophils count was observed (**Fig. 3 h)**, the eosinophil count was not affected by the presence of *C. difficile* (**Fig. 3 i)**. To the best of our knowledge, to date there are no reports on the role of basophils in CDI. Nevertheless, the potential role of CCL-5, a basophilic recruiter chemokine, has been highlighted in CDI 87,88 No differences were evident for creatinine and albumin levels (**Fig. 3 j and k)**, but an elevated urea concentration stood out in patients infected with *C. difficile* (**Fig. 3 m)**. Moreover, the BUN (Blood Urea Nitrogen)/Creatinine ratio was significantly elevated in CDI patients (**Fig. 3 n)**. Elevated BUN ratios have been associated with complications of CDI 89 as well as with higher mortality rates 90 and high urea levels were also proposed as a risk factor for severe CDI 91. ### Meta-analysis We finally performed a meta-analysis to obtain more robust and reliable conclusions about the CDI associated parameters evaluated in our cohort. We defined the selection criteria (**Fig. 4 a**) and carried out a systematic review that allowed us to select 40 independent case/control type studies (**Table 2**) from the countries shown in light grey in **Fig. 4 b**. ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F5/graphic-7.medium.gif) [](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F5/graphic-7) ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F5/graphic-8.medium.gif) [](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F5/graphic-8) Figure 4. Flow chart of the studies and countries screened and included in the Meta-analysis. a) The obtained results regarding clinical and demographic characteristics of the CDI+ and CDI-patients in our cohort were contrasted against findings of other studies through a meta-analysis by RStudio package “Metafor”. After initial identification, eligibility criteria were applied and 39 reports were included in the meta-analysis along with our data. CDI-patients were considered as the control group. b) World map showing the countries from which the studies included in the meta-analysis come (light gray). The circles contain the number of studies selected per country. View this table: [Table 2.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/T2) Table 2. Countries and studies included in the meta-analysis. The effects for each of the variables evaluated in the meta-analysis are summarized in **Table 3**. View this table: [Table 3.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/T3) Table 3. Summary of risk predictors from the meta-analysis. The dataset included 11,596 individuals with CDI and 536,467 matched controls (**Table 4)**. Overall, the distribution of biological sex was 40.06% male vs. 59.94% female, being 44.33% vs. 55.67% in the CDI+ population and 39.98% vs. 60.02% in the control group. The demographic parameters Age (OR= 1.19; 95% CI, 1.06 to 1.35) and Biological Sex (OR= 0.89; 95% CI, 0.81 to 0.99) obtained significant models, which implies that, globally, advanced age and female biological sex are associated with a higher risk of CDI (**Fig. 5 a and b).** ![Figure 5](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/04/26/2024.04.25.24306385/F6.medium.gif) [Figure 5](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/F6) Figure 5 Forest plots of risk predictors. Forest plots representative of each variable evaluated in the meta-analysis. a) Age, b) biological sex, c) previous ATB consumption, d) previous PPI consumption, e) prior hospitalization, f) prior CDI, g) heart disease, h) chronic kidney disease, i) diabetes *mellitus*, j) HIV, k) white blood cells (WBC) count (cells/mm3), l) platelets count (cells/mm3). A REML (Random Effect Maximum Likelihood, gray diamond) random effects model was applied. Models with p<0.05 (OR/SMD ± CI values less or greater than 1) were considered as potential risk predictors for CDI. Black diamonds represent the means of each of the variables in each study. Bars indicate the lower and upper confidence extremes. Our study (white diamond) is mentioned as *OUR STUDY*. OR= odds ratio. SMD= standard media deviation. CI= confidence interval View this table: [Table 4.](http://medrxiv.org/content/early/2024/04/26/2024.04.25.24306385/T4) Table 4. Meta-analysis dataset. 9.11% of the included individuals were previously exposed to antibiotics and 22.18% to PPI. Both antibiotic (CDI+ 39.95% vs. CDI-8.52%) and PPI (CDI+ 29.87% vs. CDI-21.76%) consumption was higher among those patients infected with *C. difficile* (**Table 4)**. In this analysis, which ignored antibiotic subclasses, we found that the pooled impact of any antibiotic exposure (OR= 3.02; 95% CI, 2.32 to 3.94) increased the risk of CDI by a multiple of 3 (**Fig. 5 c)**. A longer duration of antibiotic therapy, as well as a greater number of antibiotics administered increase the probability of CDI 70. The risk of acquiring CDI could be 8 to 10 times higher during antibiotic therapy, even three months after its completion, with the first month being the one with the highest risk 130. Regarding PPIs as risk factors for CDI, there is an arduous discussion with some reports showing around 40-71.4% of hospitalized patients received PPI therapy during hospitalization 131–133 and others supporting the idea that PPIs could trigger long-term adverse effects trough changes on the microbiota composition 134,135. In our meta-analysis, there was no evidence of the impact of PPI on CDI risk (**Fig. 5 d)**. Previous hospitalization emerged as the second most influential predictor for CDI risk (OR= 2.46; 95% CI, 1.90 to 3.17) (**Fig. 5 e)**. Among the CDI+ patients included in the meta-analyses, 27.88% had been hospitalized prior to diagnosis (**Table 4)** while only 16.80% in the control group. Previous episodes of CDI are widely reported as a risk factor for subsequent cases and/or recurrences in patients. However, in this meta-analysis previous CDI was not a predictor of risk (**Fig. 5 f)** which could be attributed to the fact that only 4 of the 40 included studies provided this type of data 56,103,120,123. Actually, when evaluating the Forest Plot for this variable in detail, the studies show the same trend as our epidemiological study when considering previous CDI as a risk factor. When evaluating comorbidities, both heart diseases (OR= 1.41; 95% CI, 1.02 to 1.94) and chronic kidney disease (OR= 2.23; 95% CI, 1.38 to 3.61) exhibited models with significant effects (**Fig. 5 g and h)**, indicating that these pathologies increase the risk of CDI. The rest of the tested comorbidities were not associated with a higher risk of infection (**Fig. 5 i and j)**. The presence of comorbidities has been widely reported as a condition that facilitates colonization and infection by *C. difficile* 136. A previous meta-analysis found IBD, diabetes, leukemia or lymphoma, kidney failure and solid cancer as the CDI risk-related comorbidities 137. Finally, blood parameters were analyzed. Increased leukocytes count was also a potential predictor of CDI according to our comparative analysis (OR= 1.36; 95% CI, 1.05 to 1.75) (**Fig. 5 k)**. Although the number of platelets did not show a statistically significant effect (**Fig. 5 l)**, it is important to note that only 2 studies apart from ours evaluated this parameter. ## Conclusions We have defined risk factors associated with CDI and detected modulations in different blood parameters in our study cohort in Argentina. We have also explored the relevance of our findings at a global level by a systematic review and meta-analysis. Our results emphasize the need to detect *C. difficile* as a causal agent of infectious diarrhea in a country where testing is not standardized or routinely performed in the health institutions. Our report provides valuable insights that could contribute to a more efficient surveillance of CDI, diagnosis and follow-up of patients. ## Data Availability All data produced in the present study are available upon reasonable request to the authors. ## Author contributions Conceptualization: all authors Formal analysis: AMB, NDM, JC, SP, LSM and REHDP. Funding acquisition: AMB, SP, REHDP and VP. Investigation: AMB, NDM, SP, REHDP and VP. Methodology: all authors. Software: NDM and REHDP. Supervision: REHDP and VP. Writing: AMB wrote the original draft. All authors contributed to the review & editing of this manuscript. ## Role of the funding source This work was supported by Universidad Nacional del Noroeste de la Provincia de Buenos Aires [grant numbers SIB 0618/2019, SIB 2113/2022 and “Proyectos de Investigación Interdisciplinarios de la UNNOBA” Res. CS 2190/2022, to VP]. Agencia Nacional de Promoción Científica y Tecnológica, Fondo para la Investigación Cientifica y Tecnológica [ANPCyT-FONCyT, grant numbers PICT A 2017-1896 and PICT-2021-I-A-01119 to VP; PICT 2018-03084 IB to RHDP, PICT-2021-I-INVI-00584 to AB and PICT-2021-I-INVI-00208 to SP]. UNNOBA FONCyT [grant number PICTO 2019-00007 to RHDP and VP]. Consejo Nacional de Investigaciones Cientificas y Técnicas [CONICET, grant number PIP 2021 11220200103137CO to VP and RHDP]. ## Acknowledgements We thank all the patients who voluntarily participated of this study. We also thank Natalia Menite, Lucia Romano and Gastón Villafañe for their technical assistance. We acknowledge the laboratory personnel, medical staff and biochemists who have collaborated in the collection of samples and data during the study period of this report. Finally, we thank Flaticon for the icons used in the graphical abstract of this work. ## Footnotes * # Angela María Barbero, Nicolás Diego Moriconi and Sabina Palma share first authorship. * ζ Rodrigo Emanuel Hernández Del Pino Rodrigo and Virginia Pasquinelli share the last authorship. * **Conflict of interest.** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. in 5 diarrheas is caused by C. difficile in the Northwest region of Buenos Aires, Argentina. More than the 65% of the cases were community-acquired and involved toxigenic strains. Comparison through meta-analysis identified known and also new risk factors. * Received April 25, 2024. * Revision received April 25, 2024. * Accepted April 26, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. 1.Brazier JS.. 1998;47–57. 2. 2.Zhang S, Palazuelos-Munoz S, Balsells EM, et al. BMC Infect Dis;16. Epub ahead of print 2016. DOI: 10.1186/s12879-016-1786-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-016-1786-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27562241&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 3. 3.Center for Disease Control and Prevention. CDC;10. Epub ahead of print 2019. DOI: 10.1186/s13756-020-00872-w. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13756-020-00872-w&link_type=DOI) 4. 4.Smits WK, Lyras D, Lacy DB, et al. DOI: 10.1038/nrdp.2016.20. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nrdp.2016.20&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27158839&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 5. 5.Feuerstadt P, Theriault N, Tillotson G. BMC Infect Dis. 2023;23:1–8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-023-08029-x&link_type=DOI) 6. 6.Di X, Bai N, Zhang X, et al. Brazilian J Infect Dis. 2015;19:339–349. 7. 7.Bainum TB, Reveles KR, Hall RG, et al. Microorganisms. 2023;11:1–22. 8. 8.Phanchana M, Harnvoravongchai P, Wongkuna S, et al. World J Gastroenterol. 2021;27:7210–7232. 9. 9.Burke KE, Lamont JT. Gut Liver. 2014;8:1–6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5009/gnl.2014.8.1.1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24516694&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 10. 10.Freeman J, Bauer MP, Baines SD, et al. Clinical Microbiology Reviews. 2010;23:529–549. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiY21yIjtzOjU6InJlc2lkIjtzOjg6IjIzLzMvNTI5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDQvMjYvMjAyNC4wNC4yNS4yNDMwNjM4NS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 11. 11.Goorhuis A, Bakker D, Corver J, et al. Clin Infect Dis. 2008;47:1162–1170. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/592257&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18808358&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000259759100007&link_type=ISI) 12. 12.Chitnis AS, Holzbauer SM, Belflower RM, et al. JAMA Intern Med. 2013;173:1359–1367. 13. 13.Ruiter-Ligeti J, Vincent S, Czuzoj-Shulman N, et al. Obstet Gynecol. 2018;131:387–391. 14. 14.Gupta A, Khanna S. Infect Drug Resist. 2014;7:63–72. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/IDR.S46780&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24669194&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 15. 15. Alice Y. Guh, MD, MPH and Preeta K. Kutty, MD M. Physiol Behav. 2019;169:248–256. 16. 16.Lawler AJ, Lambert PA, Worthington T. Trends Microbiol. 2020;28:744– 752. 17. 17.Paredes-Sabja D, Shen A, Sorg JA. Trends Microbiol. 2014;22:1–15. 18. 18. Hernández Del Pino RE, Barbero AM, Español LÁ, et al. J Leukoc Biol. 2021;109:195–210. 19. 19.Lim SC, Knight DR, Riley T V. Clin Microbiol Infect. 2020;26:857–863. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2019.10.023&link_type=DOI) 20. 20.Donskey CJ. Clin Infect Dis. 2010;50:1458–1461. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/652649&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20415566&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000277194800005&link_type=ISI) 21. 21.Dicks LMT. *Microorganisms*;11. Epub ahead of print 2023. DOI: 10.3390/microorganisms11092161. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/microorganisms11092161&link_type=DOI) 22. 22.Czepiel J, Dróżdż M, Pituch H, et al. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2019;38:1211–1221. 23. 23.Huang CH, Tseng YH, Tsai WS, et al. Infect Dis Ther. Epub ahead of print 2024. DOI: 10.1007/s40121-024-00922-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s40121-024-00922-5&link_type=DOI) 24. 24.Song JH, Kim YS. Gut Liver. 2019;13:16–24. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5009/gnl18071&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 25. 25.Nitzan O, Elias M, Chazan B, et al. World J Gastroenterol. 2013;19:7577– 7585. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3748/wjg.v19.i43.7577&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24282348&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 26. 26.Qu H-Q, Jiang Z-D. Diabetes Res Clin Pract. 2014;105:285–294. 27. 27.Dudzicz S, Wiecek A, Adamczak M. J Clin Med. 2021;10:1–13. 28. 28.Sartelli M, Malangoni MA, Abu-Zidan FM, et al. World J Emerg Surg. 2015;10:1–23. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1749-7922-10-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25598838&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 29. 29.Khanna S, Pardi DS. Mayo Clin Proc. 2012;87:1106–1117. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mayocp.2012.07.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23127735&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000311710400011&link_type=ISI) 30. 30.Curcio D, Cané A, Fernández FA, et al. Infect Dis Ther. 2019;8:87–103. 31. 31.Roldan GA, Cui AX, Pollock NR. J Clin Microbiol;56. Epub ahead of print March 2018. DOI: 10.1128/JCM.01747-17. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjE0OiI1Ni8zL2UwMTc0Ny0xNyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDI0LzA0LzI2LzIwMjQuMDQuMjUuMjQzMDYzODUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 32. 32.Acuña-Amador L, Quesada-Gómez C, Rodríguez C. Anaerobe;74. Epub ahead of print 2022. DOI: 10.1016/j.anaerobe.2022.102547. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.anaerobe.2022.102547&link_type=DOI) 33. 33.Crobach MJT, Planche T, Eckert C, et al. Clin Microbiol Infect. 2016;22:S63–S81. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmi.2016.03.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27460910&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 34. 34.Johnson S, Lavergne V, Skinner AM, et al. Clin Infect Dis. 2021;73:e1029– e1044. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/ciab549&link_type=DOI) 35. 35.Viechtbauer W. J Stat Softw. 2010;36:1–48. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18637/jss.v036.i11&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25285054&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 36. 36. Fernandez Canigia L, Nazar J, Arce M, et al. Rev Argent Microbiol. 2001;33:101–107. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11494752&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 37. 37.Legaria MC, Lumelsky G, Rosetti S. Anaerobe. 2003;9:113–116. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1075-9964(03)00088-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16887697&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000185221300002&link_type=ISI) 38. 38.Goorhuis A, Legaria MC, van den Berg RJ, et al. Clin Microbiol Infect. 2009;15:1080–1086. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1469-0691.2009.02759.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19438624&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 39. 39.Lopardo G, Morfin-Otero R, Moran-Vazquez II, et al. Brazilian J Infect Dis. 2015;19:8–14. 40. 40.Bartlett JG, Gerding DN. Clinical Infectious Diseases;46. Epub ahead of print January 2008. DOI: 10.1086/521863. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/521863&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18177217&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000252268000003&link_type=ISI) 41. 41.Pan L, Mu M, Yang P, et al. Am J Gastroenterol. 2020;115:766–773. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.14309/ajg.0000000000000620&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 42. 42.Granata G, Petrosillo N, Al Moghazi S, et al. Anaerobe. 2022;74:102484. 43. 43.Huttner BD, Catho G, Pano-Pardo JR, et al. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020;26:808–810. 44. 44.Chen N, Zhou M, Dong X, et al. Lancet (London, England). 2020;395:507–513. 45. 45.Adams-Sommer V, Fu Y, Grinspan LT, et al. Infect Control Hosp Epidemiol. 2021;42:1165–1166. 46. 46.Laszkowska M, Kim J, Faye AS, et al. Dig Dis Sci. 2021;66:4398–4405. 47. 47.Hawes AM, Desai A, Patel PK. Anaerobe. 2021;70:102384. 48. 48.Luo M, Liu Y, Wu P, et al. 8. Epub ahead of print 2017. DOI: 10.3389/fphys.2017.00822. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fphys.2017.00822&link_type=DOI) 49. 49.Khanna S, Kraft CS. Future Microbiol. 2021;16:439–443. 50. 50.Tariq R, Saha S, Furqan F, et al. Mayo Clin Proc. 2020;95:1632–1648. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mayocp.2020.06.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 51. 51.Louie TJ, Cannon K, Byrne B, et al. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2012;55 Suppl 2:S132–42. 52. 52.Guh AY, Mu Y, Winston LG, et al. N Engl J Med. 2020;382:1320–1330. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa1910215&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32242357&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 53. 53.Gentry CA, Williams RJ 2nd, Campbell D. Diagn Microbiol Infect Dis. 2021;100:115308. 54. 54.McDermott LA, Thorpe CM, Goldstein E, et al. Open Forum Infect Dis. 2022;9:ofac492.1299. 55. 55.Dingle KE, Didelot X, Quan TP, et al. Lancet Infect Dis. 2017;17:411–421. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 56. 56.Wilcox MH, Shetty N, Fawley WN, et al. Clin Infect Dis. 2012;55:1056– 1063. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/cis614&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22784871&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 57. 57.Khanna S, Pardi DS, Aronson SL, et al. Am Coll Gastroenterol;107. 58. 58.European Centre for Disease Prevention and Control. Annu Epidemiol Rep Commun Dis Eur. 2016;40:335–348. 59. 59.Carlson TJ, Blasingame D, Gonzales-Luna AJ, et al. Anaerobe. 2020;62:102142. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.anaerobe.2019.102142&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32007682&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 60. 60.Kincaid SE. Consult Pharm J Am Soc Consult Pharm. 2010;25:834–836. 61. 61.Owens RC. Drugs. 2007;67:487–502. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2165/00003495-200767040-00001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17352510&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000245696300001&link_type=ISI) 62. 62.Bassaris HP, Lianou PE, Legakis NJ, et al. Med Microbiol Immunol. 1984;173:49–55. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/BF02123569&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6472200&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 63. 63.Nakamura S, Mikawa M, Nakashio S, et al. Microbiol Immunol. 1981;25:345–351. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1348-0421.1981.tb00036.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7253967&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1981LM07800002&link_type=ISI) 64. 64.Bacon AE, Fekety R. Diagn Microbiol Infect Dis. 1994;18:205–209. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0732-8893(94)90021-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7924215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994NW36700001&link_type=ISI) 65. 65.Simor AE, Bradley SF, Strausbaugh LJ, et al. Infect Control Hosp Epidemiol. 2002;23:696–703. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/501997&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12452300&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000179279900015&link_type=ISI) 66. 66.Guerrero DM, Nerandzic MM, Jury LA, et al. Am J Infect Control. 2012;40:556–558. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21982209&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 67. 67.Edwards AN, Karim ST, Pascual RA, et al. Front Microbiol. 2016;7:1698. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmicb.2016.01698&link_type=DOI) 68. 68.Clark T, Wiselka M. Clin Med. 2008;8:544–547. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czoxMjoiY2xpbm1lZGljaW5lIjtzOjU6InJlc2lkIjtzOjc6IjgvNS81NDQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wNC8yNi8yMDI0LjA0LjI1LjI0MzA2Mzg1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 69. 69.Schroeder MS. Am Fam Physician. 2005;71:921–928. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15768622&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000227410600013&link_type=ISI) 70. 70.Hessen MT. Ann Intern Med. 2010;153:ITC41-15; quiz ITC416. 71. 71.Dubberke ER, Wertheimer AI. Infect Control Hosp Epidemiol. 2009;30:57– 66. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/592981&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19049438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261546700011&link_type=ISI) 72. 72.Wanahita A, Goldsmith EA, Marino BJ, et al. Am J Med. 2003;115:543–546. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0002-9343(03)00420-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14599633&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000186411700005&link_type=ISI) 73. 73.Wanahita A, Goldsmith EA, Musher DM. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2002;34:1585–1592. 74. 74.Bulusu M, Narayan S, Shetler K, et al. Am J Gastroenterol. 2000;95:3137– 3141. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1572-0241.2000.03284.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11095331&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165186200021&link_type=ISI) 75. 75.Vargas E, Apewokin S, Madan R. Anaerobe. 2017;45:101–105. 76. 76.Mihăilă RG, Cătană C, Olteanu AL, et al. Biomarkers. 2019;24:389–393. 77. 77.Buchrits S, Gafter-Gvili A, Bishara J, et al. J Clin Med;10. Epub ahead of print July 2021. DOI: 10.3390/jcm10132957. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm10132957&link_type=DOI) 78. 78.Lee DY, Chung EL, Guend H, et al. Ann Surg. 2014;259:148–156. 79. 79.Byrn JC, Maun DC, Gingold DS, et al. Med Hist. 2012;143:150–154. 80. 80.Nseir W, Khamisy-Farah R, Amara A, et al. Isr Med Assoc J. 2019;21:658– 661. 81. 81.Allegretti JR, Marcus J, Storm M, et al. Dig Dis Sci. 2020;65:1761–1766. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10620-019-05900-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31667694&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 82. 82.Zhao L, Luo Y, Bian Q, et al. Infect Drug Resist. 2020;13:171–181. 83. 83.Pant C, Madonia PN, Jordan P, et al. J Investig Med. 2009;57:40–42. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamltIjtzOjU6InJlc2lkIjtzOjc6IjU3LzEvNDAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8wNC8yNi8yMDI0LjA0LjI1LjI0MzA2Mzg1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 84. 84.Yan D, Chen Y, Lv T, et al. J Med Microbiol. 2017;66:1483–1488. 85. 85.Phanchana M, Phetruen T, Harnvoravongchai P, et al. Sci Rep. 2020;10:1– 8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-020-59121-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 86. 86.Barbero AM, Hernández Del Pino RE, Fuentes F, et al. 2024;1–14. 87. 87.Rao K, Erb-Downward JR, Walk ST, et al. PLoS One. 2014;9:e92578. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0092578&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24643077&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 88. 88.Abhyankar MM, Ma JZ, Scully KW, et al. Am Soc Microbiol. 2020;11:1–10. 89. 89. Abou Chakra CN, McGeer A, Labbe AC, et al. Clin Infect Dis. 2015;61:1781–1788. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cid/civ749&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26338788&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 90. 90.Sartelli M, Di Bella S, McFarland L V., et al. World J Emerg Surg. 2019;14:1–29. 91. 91. Bermejo Boixareu C, Tutor-Ureta P, Ramos Martínez A. Rev Esp Geriatr Gerontol. 2020;55:225–235. 92. 92. Lopes Cançado GG, Silveira Silva RO, Rupnik M, et al. Anaerobe. 2018;54:65–71. 93. 93.Lowe DO, Mamdani MM, Kopp A, et al. Proton Pump Inhibitors and Hospitalization for Clostridium Difficile-Associated Disease: A Population-Based Study. 94. 94.Dai W, Yang T, Yan L, et al. BMC Infect Dis;20. Epub ahead of print April 2020. DOI: 10.1186/s12879-020-05014-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12879-020-05014-6&link_type=DOI) 95. 95.Li Y, Huang Y, Li Y, et al. Pakistan J Med Sci. 2016;32:736–741. 96. 96.Lv Z, Peng GL, Su JR. Brazilian J Med Biol Res. 2014;47:1085–1090. 97. 97.Tang C, Li Y, Liu C, et al. Am J Infect Control. 2018;46:285–290. 98. 98.Zhou FF, Wu S, Klena JD, et al. Eur J Clin Microbiol Infect Dis. 2014;33:1773–1779. 99. 99.Carvajal C, Pacheco C, Jaimes F. Biomedica. 2017;37:53–61. 100.100.Salazar CL, Reyes C, Atehortua S, et al. PLoS One;12. Epub ahead of print September 2017. DOI: 10.1371/journal.pone.0184689. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0184689&link_type=DOI) 101.101.Soes LM, Holt HM, Böttiger B, et al. Epidemiol Infect. 2014;142:1437–1448. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0950268813002380&link_type=DOI) 102.102.Le Monnier A, Candela T, Mizrahi A, et al. J Hosp Infect. 2022;129:65–74. 103.103.Kurti Z, Lovasz BD, Mandel MD, et al. World J Gastroenterol. 2015;21:6728–6735. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 104.104.Vesteinsdottir I, Gudlaugsdottir S, Einarsdottir R, et al. Eur J Clin Microbiol Infect Dis. 2012;31:2601–2610. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10096-012-1603-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22441775&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 105.105.Ingle M, Deshmukh A, Desai D, et al. Indian J Gastroenterol. 2011;30:89– 93. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12664-011-0097-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21553102&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 106.106.Ingle M, Deshmukh A, Desai D, et al. Indian J Gastroenterol. 2013;32:179– 183. 107.107.Mori N, Aoki Y. J Infect Chemother. 2015;21:864–867. 108.108.Morfin-Otero R, Garza-Gonzalez E, Aguirre-Diaz SA, et al. Brazilian J Infect Dis. 2016;20:8–13. 109.109.Czepiel J, Biesiada G, Brzozowski T, et al. J Physiol Pharmacol an Off J Polish Physiol Soc. 2014;65:695–703. 110.110.Legenza L, Barnett S, Rose W, et al. BMJ Glob Heal;3. Epub ahead of print July 2018. DOI: 10.1136/bmjgh-2018-000889. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiYm1qZ2giO3M6NToicmVzaWQiO3M6MTE6IjMvNC9lMDAwODg5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDQvMjYvMjAyNC4wNC4yNS4yNDMwNjM4NS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 111.111.Rajabally N, Pentecost M, Pretorius G, et al. South African Med J. 2013;103:168–172. 112.112.Han SH, Kim H, Lee K, et al. J Med Microbiol. 2014;63:1542–1551. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1099/jmm.0.070672-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25187603&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 113.113.Lee YC, Wang JT, Chen AC, et al. J Microbiol Immunol Infect. 2012;45:287–295. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22209696&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 114.114.Lin C-Y, Cheng H-T, Kuo C-J, et al. Microbiol Spectr;10. Epub ahead of print August 2022. DOI: 10.1128/spectrum.00486-22. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1128/spectrum.00486-22&link_type=DOI) 115.115.Thipmontree W, Kiratisin P, Manatsathit S, et al. Epidemiology of Suspected Clostridium difficile-Associated Hospital-Acquired Diarrhea in Hospitalized Patients at Siriraj Hospital. 2011. 116.116.Ergen EK, Akalin H, Yilmaz E, et al. Med Mal Infect. 2009;39:382–387. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19269761&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 117.117.Dial S, Delaney JAC, Barkun AN, et al. JAMA. 2005;294:2989–2995. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.294.23.2989&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16414946&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234087700025&link_type=ISI) 118.118.Dial S, Kezouh A, Dascal A, et al. C Can Med Assoc J. 2008;179:767–772. 119.119.Marwick CA, Yu N, Lockhart MC, et al. J Antimicrob Chemother. 2013;68:2927–2933. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkt257&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23825381&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 120.120.Suissa D, Delaney JAC, Dial S, et al. Br J Clin Pharmacol. 2012;74:370– 375. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22283873&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 121.121.Wilcox MH, Mooney L, Bendall R, et al. J Antimicrob Chemother. 2008;62:388–396. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkn163&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18434341&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000257578200026&link_type=ISI) 122.122.Baxter R, Ray GT, Fireman BH. Infect Control Hosp Epidemiol. 2008;29:44–50. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/524320&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18171186&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000252174900007&link_type=ISI) 123.123.Haddad FG, Zaidan J, Polavarapu A, et al. Z Gastroenterol. 2019;57:1183– 1195. 124.124.Kuntz JL, Chrischilles EA, Pendergast JF, et al. BMC Infect Dis;11. Epub ahead of print July 2011. DOI: 10.1186/1471-2334-11-194. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2334-11-194&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21762504&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 125.125.Kutty PK, Woods CW, Sena AC, et al. Emerg Infect Dis. 2010;16:197–204. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid1602.090953&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20113547&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000274400300003&link_type=ISI) 126.126.Kwon SS, Gim JL, Kim MS, et al. Anaerobe. 2017;48:42–46. 127.127.Naggie S, Miller BA, Zuzak KB, et al. Am J Med;124. Epub ahead of print March 2011. DOI: 10.1016/j.amjmed.2010.10.013. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjmed.2010.10.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21396512&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 128.128.Tabak YP, Johannes RS, Sun X, et al. Infect Control Hosp Epidemiol. 2015;36:695–701. 129.129.Tartof SY, Rieg GK, Wei R, et al. Infect Control Hosp Epidemiol. 2015;36:1409–1416. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/ice.2015.220&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 130.130.Hensgens MPM, Goorhuis A, Dekkers OM, et al. J Antimicrob Chemother. 2012;67:742–748. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/jac/dkr508&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22146873&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300244100034&link_type=ISI) 131.131.Nardino RJ, Vender RJ, Herbert PN. Am J Gastroenterol. 2000;95:3118–3122. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11095327&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165186200017&link_type=ISI) 132.132.Herzig SJ, Howell MD, Ngo LH, et al. JAMA. 2009;301:2120–2128. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2009.722&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19470989&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000266328800024&link_type=ISI) 133.133.Pham CQD, Regal RE, Bostwick TR, et al. Ann Pharmacother. 2006;40:1261–1266. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1345/aph.1G703&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16804095&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 134.134.Freedberg DE, Lebwohl B, Abrams JA. Clin Lab Med. 2014;34:771–785. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cll.2014.08.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25439276&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom) 135.135.Singh A, Cresci GA, Kirby DF. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2018;33:614–624. 136.136.van Prehn J, Reigadas E, Vogelzang EH, et al. Clin Microbiol Infect. 2021;27:S1–S21. 137.137.Furuya-Kanamori L, Stone JC, Clark J, et al. Infect Control Hosp Epidemiol. 2015;36:132–141. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/ice.2014.39&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25632995&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F04%2F26%2F2024.04.25.24306385.atom)