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Abstract 
 
Background:  Lung cancer presents a significant global health challenge, with disparities in 
incidence and outcomes across races and ethnicities. These disparities underscore the need to 
explore the molecular landscapes of lung cancer in relation to ancestry. Here, we leverage data 
from a real-world clinico-genomic database to discover associations between molecular profiles 
and genetic ancestry or race/ethnicity categories. 
 
Methods: We utilized data from a cohort of 13,196 primarily late-stage non-small cell lung 
adenocarcinoma (LUAD) patients, sequenced with the Tempus xT NGS 648-gene panel, of 
which normal tissue was also sequenced for 6,520 cases. Genetic ancestry proportions were 
estimated using ancestry informative markers. Race and ethnicity categories were imputed 
using an ancestry-backed method, resulting in the assignment of 568 Hispanic/Latino, 892 non-
Hispanic (NH) Asian, 1,581 NH Black, and 10,063 NH White individuals. Multiple imputation 
addressed missing data on smoking status. Logistic regression models assessed associations 
between ancestry proportions and somatic variants in 23 LUAD-related genes, adjusting for a 
false discovery rate of 5%. Analyzed mutations included copy number alterations, gene fusions, 
protein-altering SNVs and indels, and actionable or predicted driver mutations. 
 
Results: Our analysis confirmed previously reported associations, such as a positive correlation 
between East Asian (EAS) ancestry and EGFR (OR per doubling ancestry=1.1) and a negative 
correlation with KRAS driver mutations (OR=0.96), while European ancestry exhibited the 
opposite relationship (OR=0.93 and 1.08, correspondingly; all p<0.0001). We also verified a 
positive association with EGFR driver mutations (OR=2) and a negative one with KRAS 
(OR=0.46; p<0.001) among Hispanic/Latino patients and American Indigenous (AMR) genetic 
ancestry (OR=1.03 and 0.97, correspondingly; p<0.05). Novel associations were identified 
between African (AFR) and South Asian (SAS) ancestries and LUAD genes. Some associations 
are explained by differences in smoking status (e.g., ATM and ALK fusions), while others persist 
even after adjusting for smoking (e.g., EGFR, KRAS, and CDKN2A copy-number alterations). 
Notably, we identified a positive association between EAS ancestry and the imputed NH Asian 
category with driver mutations in CTNNB1 (OR=1.05 and 2.2, respectively; p<0.01), 
independent of smoking. These mutations are rare in NH White patients (2.4%) but are more 
prevalent in never-smoker NH Asian patients with predominant EAS ancestry (8.5%). 
 
Conclusion: This study underscores the value of clinico-genomic databases in revealing 
associations between LUAD mutational profiles and genetic ancestry, shedding light on lung 
cancer disparities. Identification of a previously unappreciated association between EAS with 
CTNNB1, a potential biomarker for spindle assembly checkpoint kinase (TTK) inhibitors 
effectiveness and prognosis in LUAD, emphasizes the value of studying diverse populations in 
cancer research, paving the way for more equitable lung cancer treatments. 
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Introduction 
Lung cancer is a multifaceted disease, shaped by a mix of environmental exposures and 
genetic predispositions.1 While smoking is the foremost causal factor in lung cancer 
development, decreasing rates of smoking and associated mortality2 have highlighted the rising 
incidence of lung cancer in never-smokers.3 This shift accentuates the need to explore lung 
cancer's contributing factors beyond smoking. 
 
Non-small cell lung adenocarcinoma (LUAD), the most common lung cancer subtype,4 is 
distinguished by unique molecular and epidemiological characteristics. LUAD features diverse 
genetic alterations, such as mutations in EGFR, KRAS, and ALK genes,4 which have been 
reported to differ across race and ethnicity (R/E) groups.5–10 The incidence and mortality rates of 
LUAD also vary markedly among different R/E and regions.11–13  
 
Disparities in lung cancer incidence and outcomes across R/E and gender suggests a complex 
interaction between genetic vulnerability and environmental factors. For instance, never-smoker 
women of East Asian descent have a higher prevalence of LUAD with EGFR mutations.3 Black 
men face disproportionately higher lung cancer rates and worse outcomes than their White 
counterparts, suggesting that socio-economic factors, healthcare access, and potential genetic 
differences contribute to lung cancer disparities.9,12 The distinct molecular profiles of lung cancer 
in Hispanic/Latino populations, such as the higher prevalence of KRAS mutations,6 further 
emphasize the importance of examining lung cancer's molecular landscapes in the context of 
genetic ancestry and race/ethnicity to discover new insights for targeted treatments and 
personalized care. 
 
Historically, the exploration of lung cancer's molecular profiles in relation to genetic ancestry 
and R/E categories have been hampered by limited diversity in research cohorts, small sample 
sizes with minimal minority representation,14 and reliance on broad and overlapping US federal 
R/E categories.15 These categories, which group genetically and geographically diverse 
populations together (e.g. conflate East and South Asians in “Asian”), and obscure the potential 
range of genetic admixtures (e.g. in Blacks and Hispanic or Latinos), limit the understanding of 
lung cancer's complexities.16,17 
 
Real-world clinical genomics databases that aggregate de-identified data from patients 
undergoing clinical testing offer a valuable resource for overcoming these limitations.18–20 Such 
databases are growing rapidly, reflecting the increasing adoption of tumor profiling and liquid 
biopsies in treatment guidelines.19 Despite healthcare access disparities, the representation of 
minority groups in these databases has improved,21,22 providing a rich source of multimodal 
molecular data for investigating molecular associations with race, genetic ancestry, and other 
clinical factors. 
 
However, challenges such as significant missingness in R/E data21,23 and gaps in clinical data, 
like smoking history,24 persist. To bridge these gaps, our study leverages the Tempus clinico-
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genomic database to explore the associations between LUAD molecular profiles and genetic 
ancestry or R/E categories, inferring continental-level genetic ancestry from molecular data.  
 
Our approach has revealed both known and novel associations between somatic mutations and 
genetic ancestry and R/E groups. Notably, we uncovered population-based associations with 
biomarkers of drug effectiveness and prognosis in LUAD, demonstrating the importance of 
studying diverse populations to identify new therapeutic strategies and insights that may help 
address healthcare disparities.  

Methods 
Patient cohort 
We obtained records for 13,196 cancer patients diagnosed with LUAD from the de-identified 
Tempus clinico-genomic database, which includes genomic and clinical data from cancer 
patients that underwent tumor profiling using the Tempus xT assay as part of their healthcare. 
Briefly, Tempus xT is a targeted, tumor-normal-matched DNA panel that detects single-
nucleotide variants, insertions and/or deletions, and copy number variants in 648 genes, as well 
as chromosomal rearrangements in 22 genes with high sensitivity and specificity.25,26 Selection 
criteria included tumor profiling with the Tempus xT assay (v2-v4) from 2018 to 2022. For 
patients with multiple independent test results, we selected the results corresponding to the first 
collection date.  
 
Genetic ancestry estimation 
We determined proportions of continental genetic ancestry employing a supervised variant of 
the ADMIXTURE algorithm for global genetic ancestry inference,27 following methodologies 
outlined in prior research.22,28 We estimated ancestry proportions across five major super-
populations—Africa (AFR), American Indigenous (AMR), East Asia (EAS), Europe (EUR), and 
South Asia (SAS)—utilizing a custom set of 654 ancestry informative markers (AIMs) previously 
identified in the targeted sequencing regions of the Tempus xT assay.22 Reference allele 
frequencies for these AIMs were derived from the 1,000 Genomes Project,29 the Human 
Genome Diversity Project,3033 and the Simons Genome Diversity Project31 databases. 
Specifically for the AMR super-population, we omitted the admixed "AMR" group from the 1,000 
Genomes Project, opting instead for allele frequencies of Native American individuals from the 
alternate sources to enhance accuracy in reflecting American Indigenous population similarities. 
 
Imputation of race and ethnicity 
The categories of race and ethnicity in real-world data (RWD) follow the guidelines set by the 
US Office of Management and Budget.15 Yet, these classifications can complicate analyses due 
to the separate questions for race and ethnicity, leading to the practical approach of flattening 
these categories into distinct, non-overlapping categories used in this study:32  Hispanic or 
Latino, non-Hispanic (NH) Asian, NH Black, and NH White. We imputed these race and ethnicity 
categories based on genetic ancestry proportions, utilizing a boosted logistic regression 
machine learning algorithm as outlined in earlier research.33 Individuals without at least a 50% 
probability of belonging to one of the race/ethnicity groups were categorized as “No Call” 
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(0.7%). Prior publications have validated the accuracy of this approach using data from the 
Tempus clinico-genomic database (correct rate of 96% and weighted error of 0.9%).33 
 
Statistical analyses 
Somatic mutations in genes previously associated with LUAD34–3637–39 present on the Tempus 
xT gene panel with a mutation in at least one percent of patients in the selected cohort were 
tested for association with genetic ancestry proportions and race and ethnicity categories. Five 
mutation types were tested separately: protein-altering SNVs and indels, gene fusions, SCNAs, 
mutations with an OncoKB classification for any cancer type as therapeutic level one or two or 
resistance level one,3740 and LUAD driver mutations as predicted by the boostDM algorithm.35  
 
A directed acyclic graph (DAG) helped us to visualize the confounders and causative factors 
affecting LUAD incidence, particularly the relationships among R/E or genetic ancestry, 
smoking, social determinants of health (SDOH) and other environmental exposures, genetic 
predispositions, and somatic mutations (Supplementary Figure 1). The DAG positions smoking 
as a key mediator in the pathway from race/ethnicity to somatic mutations, indicating that the 
relationship between genetic ancestry and mutation rates is modulated, in part, by smoking 
behaviors. Associations were determined using likelihood ratio tests (LRTs) comparing full and 
nested logistic regression models. Three analyses were performed for each gene and mutation 
type: (1) univariable  analysis, with the full model consisting of an indicator for the presence of 
somatic mutations in the gene as the dependent variable and either genetic ancestry 
proportions or imputed race and ethnicity category as the independent variables, and an 
intercept-only nested model; (2) complete case analysis adjusted for smoking status, with the 
same models as in the univariable  analysis but with smoking status included as an additional 
independent variable in both the full and nested models, with only patients with known smoking 
status included; and (3) multiple imputation analysis adjusted for smoking status, using the 
same models as complete case analysis but including all patients and utilizing multiple imputed 
values for smoking status and pooling results (see below). Compositional data analysis methods 
were used to enable inclusion of all five genetic ancestry proportions in the same models. 
Specifically, genetic ancestry proportions were transformed into an isometric log ratio 
representation using the pivotCoord function in the robCompositions R package.38 Models 
including imputed race and ethnicity categories used NH White as the reference category. For 
each mutation type, LRT p-values were corrected for the number of genes tested using the 
Benjamini-Hochberg method to control the false discovery rate at 5%. For any association 
where the corrected LRT p-value was <0.05, all logistic regression p-values <0.05 for a specific 
genetic ancestry proportion or imputed race and ethnicity group from the full model were 
considered associated. 
 
Multiple imputation 
Multivariate imputation by chained equations (MICE) was performed in R using the mice 
package.39 Variables included as predictors in imputation models were smoking status, gender, 
age quartile at collection of tumor specimen, U.S. census division of patients’ home address 
state derived from 3-digit Zip Code (Pacific, Mountain, West North Central, West South Central, 
East North Central, East South Central, New England, Middle Atlantic, or South Atlantic), 
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genetic ancestry proportions transformed to isometric log ratio pivot coordinates, tumor grade, 
cancer stage, tumor mutational burden (TMB, in mutations/megabase), assay version, and 
indicators for the presence of mutations in the genes tested: (1) actionable mutations in ATM, 
BRAF, CTNNB1, EGFR, KRAS, NF1, PIK3CA, RBM10, STK11, and TP53; (2) CDKN2A, EGFR, 
ERBB2, KRAS, and MET SCNAs; and (3) gene fusions with ALK (Supplemental Figure 2). The 
following methods were used for variables with missingness: smoking status (46% missing), 
logistic regression; age quartile at collection of tumor specimen (19% missing), multinomial 
regression; U.S. census division (19% missing), random forests; tumor grade (64% missing), 
multinomial regression; cancer stage (32% missing), multinomial regression; TMB (0.05% 
missing), predictive mean matching. Ten datasets were imputed, each with 20 iterations of the 
MICE algorithm. Plots of the mean and standard deviation of each variable with missingness 
were examined to assess convergence of the MICE algorithm, and distributions of imputed 
values were compared to measured values to assess the quality of imputations. Likelihood ratio 
test statistics from the imputed datasets were combined using the D3 function in the mice 
package,41 and logistic regression test statistics were combined using the pool function in the 
mice package using the “Rubin 1987” pooling rule.40 We observed that MICE iterations 
converge well in our data (Supplementary Figure 4), that the multiply imputed categorical 
variables align with observed data (Supplementary Figure 5), and that the multiply imputed 
smoking status is distributed similarly across R/E categories, albeit with a tendency toward over-
imputation of current/former smoking status in Hispanic/Latino and NH Asian (Supplementary 
Figure 6). 

Results 
Patient characteristics 
Our study examined a cohort of LUAD patients totaling 13,196 individuals. Patients were 
categorized by imputed R/E into Hispanic or Latino (N=568), NH Asian (N=891), NH Black 
(N=1,581), and NH White (N=10,063), with 93 patients not included in any of these categories 
(Table 1). While most patients have majority European genetic ancestry (EUR), there is also a 
substantial number of patients with African (AFR), American Indigenous (AMR) and East Asian 
(EAS) ancestries, while patients of South Asian ancestry (SAS) are less represented in our 
cohort (Figure 1). We also observed a conflation of EAS and SAS ancestries in the NH Asian 
category—a well-known challenge. A notable majority of patients (75%) were former or current 
smokers, especially within the NH Black (84%) and NH White (79%) groups. Ages at specimen 
collection and diagnosis were, on average, in the mid- to late-sixties across groups, with minor 
variations across R/E. Gender distribution maintained a balance across groups, albeit with a 
modest female majority overall in the cohort. In this study, we also analyzed a sub-cohort of 
patients that had paired tumor and normal (T/N) specimens sequenced (Supplementary Table 
1). 
 
Smoking status, age at specimen collection, and age at diagnosis all varied significantly across 
R/E categories (p<0.001), suggesting potential differences in disease exposures and disease 
course prior to sequencing (Table 1, Supplementary Figure 1). Of patients with known cancer 
stage, 63% had stage 4 cancer, consistent with expected utilization of tumor profiling in cancer 
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care. This percentage was higher in the Hispanic or Latino (72%) and NH Asian (69%) 
categories (p<0.001), pointing to a higher prevalence of advanced disease at sequencing. TMB 
count also varied by R/E (p<0.005), with NH Black patients displaying a higher TMB count in the 
complete cohort (encompassing tumor only, TO, plus tumor-normal matched, T/N, sequencing 
modalities). However, TMB count in T/N cases, where misclassifications of germline variants as 
somatic is avoided, shows Hispanic/Latino and NH Asian exhibiting a lower burden (p<0.001; 
Supplementary Table 1).  
 
Compared to never smokers, former or current smokers varied considerably by R/E, stated 
race, and stated ethnicity p<0.001), more male (48% vs. 32%), and had an earlier cancer stage, 
higher tumor grade, and higher TMB (average 5.0 vs. 2.3) (Supplementary Tables 2 and 3). 
There were no R/E differences in age at collection or diagnosis, assay version, microsatellite 
instability (MSI) status, or availability of normal tissue for sequencing. Compared to patients 
without available smoking status, patients whose smoking status was known varied by R/E 
(p=0.019) and stated race (p=0.01), were younger at time of specimen collection and at 
diagnosis (mean 67 vs. 71 in both cases; p<0.001), female (56% vs. 53% p<0.001)), more likely 
to be sequenced on an earlier xT assay version (82% xT.v4 vs. 90%; p<0.001)), had a slightly 
lower TMB count (4.2 on average vs. 4.6; p<0.001)), and were more likely to have normal tissue 
available for sequencing (54% vs. 44%). There was no difference in cancer stage, tumor grade, 
MSI status, or stated ethnicity. 
 
We observed that smoking correlates with TMB, gender, and tumor grade (Supplementary 
Figure 2A) and mutations in genes such as KRAS, EGFR, and ALK fusions (Supplementary 
Figure 2B; Supplementary Figure 3A), as previously reported in the literature.4 Moreover, 
smoking status was associated with R/E (p<0.001; see Table 1) and affects frequency of 
somatic mutations in genes (Supplementary Figure 3B).  
 
Associations between genetic ancestry and somatic mutations 
We tested for associations between continental genetic ancestry proportions and somatic 
alterations in genes with known oncogenic properties in LUAD (Supplementary Table 4, see 
Methods for selection criteria).  
 
A univariable analysis revealed associations between genetic ancestry and somatic mutation 
patterns in several LUAD genes (Table 2). We confirmed a previously reported association 
between EAS with an increased frequency of driver mutations in EGFR (OR per doubling 
ancestry=1.1, p<0.0001), and a decreased frequency in STK11 (OR=0.95, p<0.01) and KRAS 
(OR=0.95; p<0.0001), which remain associated after adjusting for smoking status (Figure 2). 
These associations were also observed when restricting to OncoKB actionable variants (Level 
1, 2 and R1; Supplementary Figure 8). Additionally, we observed a positive association between 
CDKN2A SCNAs (OR=1.03; p=0.002), and a decrease in driver mutations in BRAF (OR=0.95; 
p=0.004) as EAS ancestry increases that persisted after adjustments for smoking. An 
association between EAS and increased driver mutations in CTNNB1 was also observed 
(OR=1.04; p=0.009), which is attenuated by adjusting for multiple imputed smoking status 
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(Figure 2), but not when adjusting for smoking in case-complete analysis (Supplemental Table 
5, Supplemental Figure 7). 
 
Associations were also identified between American Indigenous (AMR) ancestry, with a 
decreased frequency of driver mutations in TP53 (OR=0.98; p=0.006) and KRAS (OR=0.97; 
p=0.002), although both become non-significant when controlling for smoking status (Figure 2). 
Previous studies have also shown an association between Native American ancestry and 
increased actionable variants in EGFR.6 Although we did not observe this association using 
boostDM predicted driver variants, we were able to replicate using OncoKB actionable variants 
(OR=1.04; p=0.0030), as well as with protein-altering variants in general (restricted to T/N 
cases; OR=0.97; p=0.001;Supplementary Figure 7). While the association of AMR with 
actionable variants in EGFR appears to be modulated by smoking, the association with protein 
altering variants remains significant after adjusting for smoking, either in the case-complete or 
multiple imputation analyses. Further, we find a significant association between AMR ancestry 
and ALK gene fusions (OR=1.06; p=0.003), which disappeared following adjustment for 
smoking (Figure 2). 
  
For AFR ancestry, we observed decreased driver mutations in RBM10 (OR=0.96), EGFR 
(OR=0.94) and fewer ALK fusions (OR=0.96) and CDKN2A SCNAs (OR=0.98), and increased 
driver mutations in BRAF (OR=1.04), NF1 (OR=1.04), STK11 (OR=1.03) and TP53 (OR=1.02, 
all p<0.05; Figure 2). All but BRAF and RBM10 appear to be influenced by smoking (Figure 2). 
There were also associations with SAS ancestry showing decreased SCNAs in CDKN2A 
(OR=0.98) and driver mutations in NF1 (OR=0.93) and TP53 (OR=0.98, all p<0.05), with the 
latter being attenuated by smoking adjustment (Figure 2). Further, we observed associations 
between EUR ancestry and increased mutations in KRAS (1.08) and ATM (OR-1.07) that were 
not influenced by smoking, as well as increased driver mutations in NF1 (OR=1.02), RBM10 
(OR= 1.05), and STK11 (OR=1.05), and decreased mutations in CTNNB1 (OR=0.95), and ALK 
fusions (OR=0.9; all p<0.05), which lost significance after adjusting for smoking status (Figure 
2).  
 
Finally, we also identified significant gene associations when considering any protein-altering 
variants regardless of their driver/actionable status and restricted to T/N cases only. These 
include associations between EAS and decreased number of variants in KEAP1 (OR=0.94) and 
SMARCA4 (OR=0.95), which appear to be independent of smoking status, while EUR showed 
the opposite effect (OR=1.05 and OR=1.05, correspondingly; all p<0.05), although attenuated 
by smoking (Supplementary Figure 8).   
 
Associations between imputed race and ethnicity categories and somatic mutations 
In addition to the associations with genetic ancestry proportions, we conducted analyses with 
imputed R/E categories, using NH White as the reference group. Consequently, these analyses 
do not reveal associations specific to the NH White group. Results of all R/E LRT and 
association tests are given in Supplementary Table 6 and Files 4-6. Generally, we observed a 
strong concordance between AFR ancestry and NH Black, EAS and NH Asian, and AMR and 
Hispanic/Latino categories for associations with driver mutations in BRAF, CTNNB1, EGFR, 



9 

KRAS, STK11, and TP53, as well as SCNAs in CDKN2A and ALK gene fusions (Figure 3). 
However, some discrepancies were noted; for instance, the associations between 
Hispanic/Latino and an increased or decreased number of driver mutations in EGFR and KRAS, 
respectively, were robust against MICE smoking adjustments. Notably absent were associations 
between Hispanic/Latino (seen with AMR) or NH Asian (seen with SAS) with mutations in TP53, 
and the association between SAS and decreased mutations in NF1 did not emerge here 
(potentially because NH Asian conflates East and South Asians, with the latter being 
underrepresented in our cohort). Additionally, we found associations between Hispanic/Latino 
and an increased occurrence of ALK gene fusions (OR=2.9), and decreased driver mutations in 
RBM10 (OR=0.43; both p<0.01). The analysis of OncoKB actionable and short protein-altering 
mutations essentially mirrors the results with driver mutations and genetic ancestry, with a few 
additions: associations between NH Black and increased protein altering mutations in ALK 
(OR=1.51) and KEAP1 (OR=1.24); between Hispanic/Latinos and reduced mutations in KEAP1 
(OR=0.29) and STK11 (OR=0.52); and between NH Asian and reduced mutations in KEAP1 
(OR=0.27) and STK11 (OR=0.2; all p-value<0.3) Supplementary Figure 9). 
 
Distribution of mutations in CTNNB1 across imputed R/E categories 
We aimed to further characterize the associations found with driver mutations in the β-Catenin 
gene, CTNNB1, and EAS and NH Asians. Initially, we observed that this association was 
identified using boostDM predicted drivers and total protein-altering mutations, and with both 
genetic ancestry and the imputed NH Asian category. Although the association is attenuated 
with smoking in multiple imputations for predicted driver mutations (see Table 2), the 
association with genetic ancestry remains unaffected after adjustment for smoking in protein-
altering variants (Supplemental Figure 8), as well as for associations found with the imputed NH 
Asian category with predicted drivers (Figure 3) or protein-altering mutations (Supplemental 
Figures 8 and 9). Thus, our results suggest that smoking does not totally explain the increased 
burden of mutations in CTNNB1 in EAS ancestry or NH Asian patients. 
 
We examined the proportion of patients harboring a predicted driver mutation in CTNNB1 
across imputed R/E categories, distinguishing individuals with East Asian (EAS) and South 
Asian (SAS) ancestries within the NH Asian group. Figure 4 demonstrates that while the overall 
fraction of NH White patients in the cohort with such mutations is low (2.4%), albeit slightly 
higher in never-smoker NH White (3.6%). In contrast, this fraction is higher overall in NH Asian-
EAS patients (5%; Fisher exact p-value<0.001) and even higher in never-smokers NH Asian-
EAS patients (8.6%; p=0.001). It also appears in a considerable number of never-smoker 
Hispanic/Latino (3.8%) and NH Black (5.6%) patients (Supplementary Table 7). 
 

Discussion 
In recent years, advances in genomic technologies have enabled a deeper understanding of the 
molecular underpinnings of lung cancer. However, the relationship between the molecular 
profiles of lung cancer and genetic ancestry or R/E categories remains relatively underexplored 
due to limited diversity in research studies. Previous studies in this area have been limited by a) 
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a lack of diversity in research cohorts (e.g. TCGA41); b) smaller sample sizes; and c) reliance on 
US government-mandated R/E categories,15 which can be problematic. Considering these 
limitations, real-world clinical genomics databases represent a valuable resource for advancing 
our understanding of disparities and their molecular correlates in cancer research. Furthermore, 
the volume of data stored by such databases is expanding rapidly, ensuring that despite existing 
healthcare access disparities, minority groups are represented in substantially larger numbers 
compared to traditional research cohorts. Nevertheless, real-world data can have several 
shortcomings, notably substantial missingness in R/E data. The extent of this missingness is 
complex and varies across sources, ranging from 30-70%,23 but can largely be attributed to 
issues in data transmission and collection rather than simply patient abstention.42,43  
 
The present study aimed to analyze data from a real-world clinico-genomic database to provide 
insights into the associations between lung cancer molecular profiles and genetic ancestry or 
R/E categories. To address the challenges typically associated with RWD, we implemented 
several strategies. Firstly, we inferred continental-level genetic ancestry from molecular data 
obtained during testing,22 allowing us to eschew categorical analysis in favor of logistic 
regression methods.38 We directly assessed the association between genetic ancestry 
proportions and somatic mutations of a specific type in LUAD genes via likelihood ratio tests 
(LRTs). P-values were examined if a positive association was identified.  Compared to a 
strategy that forgoes LRTs and examines all logistic regression p-values directly, our approach 
reduces the multiple testing burden, ensuring high statistical power while minimizing the risk of 
type I errors. Additionally, when analyzing genetic ancestry proportions, it is essential to address 
the fact that they sum to one, resulting in collinearity (e.g., in admixed NH Black patients, it is 
common for AFR ancestry to increase as EUR ancestry decreases). We thus employed 
compositional logistic regression methods, applying an isometric log-ratio transform to include 
all proportions in the same model.38 This enabled us to identify associations with increased EUR 
ancestry, whereas in R/E analysis (see below), NH White is consistently used as the control, 
thereby not permitting the elucidation of these effects. To address the issue of missing clinical 
data, we utilized a multiple imputation strategy (MICE39) and performed an extensive 
assessment of the results to understand the accuracy of imputed values. This approach enabled 
us to increase power and to explore smoking's role in our findings. For completeness, and 
because multiple imputation and complete case analysis are subject to different types of bias, 
we provided complete case analysis results from patients with known smoking status only (cf. 
Supplementary Materials). Finally, for a categorical analysis involving R/E, we employed a 
previously developed ancestry-backed R/E imputation method demonstrated to be highly 
accurate within the Tempus data set.33  
 
We identified associations between genetic ancestry or imputed R/E categories with different 
types of variants in LUAD-related genes. Our analysis included protein-altering short variants, 
SCNAs, rearrangements associated with gene fusions, actionable variants listed in OncoKB37 
(Levels 1 & 2 and L1), and somatic driver variants for LUAD predicted by the boostDM 
algorithm.35 The boostDM algorithm evaluates and categorizes all possible single base 
substitutions in cancer genes according to their tumorigenic potential, drawing on a 
comprehensive analysis of mutations observed in a vast collection of sequenced tumors and 
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annotating each site with relevant mutational features. This approach allowed us to compile a 
more comprehensive and potentially less biased list of driver mutations for genes for which 
boostDM models are available. Some of the associations we found with EAS, such as those 
with CDKN2A and BRAF persist after adjustment for smoking status. These associations are 
particularly noteworthy as the global decline in smoking has led to a higher prevalence of non-
smoker LUAD, which is disproportionately represented in patients of East Asian ancestry.  
 
One notable finding is the association between driver mutations in CTNNB1 (the β-Catenin 
gene) and EAS ancestry. β-Catenin acts as a crucial co-activator in the oncogenic Wnt signaling 
pathway, where aberrations often lead to oncogenesis.44 Somatic mutations in CTNNB1, 
especially in exon 3, are implicated in this process, causing stabilization and accumulation of β-
Catenin in cells and activating the Wnt/β-Catenin signaling pathway to increase cell 
proliferation.45 It has been reported that cancer cell lines with activating mutations in the 
CTNNB1 gene are five times more sensitive to inhibitors of the spindle assembly checkpoint 
kinase (TTK), which are emerging as promising antineoplastic agents.46 Thus, CTNNB1 
mutations have been proposed as prognostic drug response biomarkers, potentially enabling 
the selection of patients most likely to benefit from TTK inhibitor therapy in proof-of-concept 
clinical trials.44,47 While CTNNB1 mutations are prevalent in endometrial cancer and 
hepatocellular carcinoma,46 they have also been suggested as biomarkers for post-operative 
recurrence-free survival in EGFR-mutant LUAD.48 However, previous studies have indicated 
that CTNNB1 mutations are rare in LUAD, with two large series reporting a frequency of 
approximately 2%—studies predominantly involving patients of European descent.49,50 In 
contrast, smaller case studies focusing on East Asian patients have indicated a higher 
frequency of CTNNB1 mutations in LUAD.51,52 Our RWD study, which has a much larger sample 
size, now confirms the presence of CTNNB1 driver mutations at appreciable frequencies in East 
Asian and Hispanic/Latino patients, as well as a statistically significant association with EAS 
ancestry. These results open the possibility of using CTNNB1 mutations as biomarkers for the 
effectiveness of TKK inhibitors and prognosis in LUAD. 
 
Our study's methodology, robust in uncovering associations between genetic ancestry and 
mutational profiles in LUAD, faces several limitations worth noting. First, RWD may display 
ascertainment bias, as patients undergoing tumor profiling testing are likely those with later-
stage cancer. This bias is exacerbated by disparities in insurance coverage and healthcare 
access, which may be confounded with R/E. Second, our approach to imputing R/E is limited to 
mutually exclusive categories, currently excluding Native American/Alaskan Natives—who are 
likely misclassified as "Hispanic/Latino"—and Hawaiian/Pacific Islanders, often misclassified as 
"NH Asian." As the database expands to include more such patients, we plan to refine our 
methods to also impute these categories. Additionally, although multiple imputation is a vital tool 
for addressing missing data, it has its imperfections and potential biases. The directed acyclic 
graph in Supplementary Figure 1 highlights the roles of social determinants of health (SDOH), 
environmental, and genetic exposures in LUAD development, and considers how access to 
healthcare and screening affects cancer diagnosis, thus underscoring the complexity of these 
interacting factors. A significant limitation of our analysis is the lack of data on SDOH, which 
undeniably affects both the incidence and outcomes of lung cancer. This absence hinders our 
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full understanding and integration of these factors into our analysis. Most importantly, it is 
essential to interpret our findings within the context that our methods establish associations 
rather than causality. This distinction necessitates cautious interpretation of our results, and 
underscores the importance of further research to clarify the intricate connections between 
genetic ancestry, mutational profiles, and lung cancer. 

Conclusion 
Our methodology allowed us to identify both known and novel associations between somatic 
mutations and genetic ancestry or R/E groups. Our findings suggest that driver mutations in 
CTNNB1 characterize a subgroup of mainly never-smoker LUAD patients more prevalent in 
East Asian populations, a potential biomarker of drug effectiveness. This result demonstrates 
how studies within diverse populations can aid the identification of new therapeutic approaches 
and provide insights that may ultimately help explain and address healthcare disparities.  
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Tables 
Table 1. Cohort characteristics by imputed race and ethnicity category. Last column shows 
the results of statistical tests (as defined in footnote) for differences of the characteristics by 
imputed race and ethnicity. 
 

Characteristic 

Hispanic or 
Latino,  
N = 5681 

NH Asian,  
N = 8911 

NH Black,  
N = 1,5811 

NH White,  
N = 10,0631 

No Call,  
N = 931 p-value2 

Smoking status <0.001 
Former or current 
smoker 157 (46%) 162 (34%) 731 (84%) 4,256 (79%) 39 (70%)  
Never smoked 
tobacco 184 (54%) 317 (66%) 142 (16%) 1,128 (21%) 17 (30%)  
Unknown 227 412 708 4,679 37  
Age at specimen 
collection 66 (57, 74) 68 (60, 75) 66 (60, 72) 69 (62, 76) 66 (55, 72) <0.001 
Unknown 96 197 323 1,931 22  
Age at diagnosis 66 (57, 74) 67 (59, 75) 65 (60, 72) 69 (62, 76) 66 (55, 72) <0.001 
Unknown 123 215 401 2,412 29  
Gender 0.085 
Female 324 (57%) 480 (54%) 850 (54%) 5,514 (55%) 39 (42%)  
Male 244 (43%) 411 (46%) 731 (46%) 4,549 (45%) 54 (58%)  
Assay version >0.9 
xT.v4 488 (86%) 758 (85%) 1,372 (87%) 8,589 (85%) 80 (86%)  
xT.v2 36 (6.3%) 59 (6.6%) 96 (6.1%) 680 (6.8%) 7 (7.5%)  
xT.v3 44 (7.7%) 74 (8.3%) 113 (7.1%) 794 (7.9%) 6 (6.5%)  
Cancer stage <0.001 
Stage 1 27 (6.7%) 59 (10%) 131 (12%) 895 (13%) 6 (8.7%)  
Stage 2 29 (7.2%) 36 (6.2%) 64 (6.0%) 553 (8.0%) 4 (5.8%)  
Stage 3 58 (14%) 85 (15%) 174 (16%) 1,180 (17%) 10 (14%)  
Stage 4 290 (72%) 403 (69%) 695 (65%) 4,281 (62%) 49 (71%)  
Unknown 164 308 517 3,154 24  
Tumor grade      0.8 
Low 24 (12%) 32 (12%) 54 (10%) 424 (12%) 3 (7.7%)  
Medium 77 (39%) 98 (36%) 214 (41%) 1,397 (38%) 12 (31%)  
High 98 (49%) 146 (53%) 256 (49%) 1,858 (51%) 24 (62%)  

Unknown 369 615 1,057 6,384 54  
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MSI status 0.4 

Low/Stable 567 (100%) 888 (100%) 
1,573 
(100%) 

10,032 
(100%) 92 (99%)  

High 1 (0.2%) 3 (0.3%) 7 (0.4%) 29 (0.3%) 1 (1.1%)  
Unknown 0 0 1 2 0  
TMB count 
(mutations/mb) 3.1 (1.7, 5.4) 3.4 (1.9, 5.4) 5.8 (3.1, 9.2) 4.2 (2.5, 6.9) 3.9 (2.7, 6.9) <0.001 
Unknown 0 0 1 5 0  
Tumor/normal tissue status 0.045 
Tumor and normal 291 (51%) 433 (49%) 727 (46%) 5,020 (50%) 49 (53%)  
Tumor only 277 (49%) 458 (51%) 854 (54%) 5,043 (50%) 44 (47%)  

Stated race <0.001 
American Indian or 
Alaska Native 8 (3.6%) 0 (0%) 0 (0%) 10 (0.2%) 0 (0%)  
Asian 2 (0.9%) 364 (87%) 1 (0.1%) 6 (0.1%) 2 (5.3%)  
Black or African 
American 3 (1.4%) 2 (0.5%) 834 (95%) 4 (<0.1%) 8 (21%)  
Native Hawaiian or 
Other Pacific 
Islander 0 (0%) 10 (2.4%) 0 (0%) 2 (<0.1%) 0 (0%)  
Other Race 88 (40%) 30 (7.2%) 24 (2.7%) 181 (3.2%) 6 (16%)  
Race not stated 3 (1.4%) 0 (0%) 2 (0.2%) 15 (0.3%) 1 (2.6%)  
White 118 (53%) 11 (2.6%) 13 (1.5%) 5,439 (96%) 21 (55%)  
Unknown 346 474 707 4,406 55  
Stated ethnicity <0.001 
Hispanic or Latino 233 (89%) 7 (2.8%) 10 (2.3%) 63 (1.8%) 9 (35%)  
Not Hispanic or 
Latino 28 (11%) 246 (97%) 423 (98%) 3,403 (98%) 17 (65%)  
Unknown 307 638 1,148 6,597 67  

1 n (%); Median (IQR) 
2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's Exact Test for Count Data with 
simulated p-value (based on 2000 replicates) 
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Figures 
 
Figure 1. Ancestry proportions for patients in cohort by imputed race and ethnicity. Vertical bars represent the global 
continental ancestry admixture proportions for each patient, color-coded according to the scale provided in the legend. Patients are 
categorized by imputed race and ethnicity on the x-axis and are further sorted within each group by increasing values of their 
predominant continental ancestry.  
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Figure 2. Forest plots for associations between genetic ancestry and SCNAs, gene 
fusions, and driver somatic mutations. The odds ratios (depicted as circles) and 95% 
confidence intervals (represented by horizontal lines) are shown for LUAD genes that met our 
criteria and displayed significant likelihood ratio tests (LRT) after adjusting for multiple testing at 
least in the univariable  analysis. Colors represent ancestries as per color legend, full circles 
indicate significant logistic regression results, while empty circles denote cases where the odds 
ratio did not reach significance. Panel A, significant findings from univariable  analyses without 
adjusting for smoking (n=13,196). Panel B, results after adjusting for smoking status derived 
from multiple imputation (n=13,196). 
 
 A                                                                    B 
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Figure 3. Forest plots for associations between imputed R/E categories and somatic 
mutations.  Odds ratios (circles) and 95% confidence intervals (horizontal lines) for imputed 
race and ethnicity associations with somatic mutations using NH White as the reference group. 
LUAD genes that met our criteria and displayed significant likelihood ratio tests (LRT) after 
adjusting for multiple testing in at least in the univariable  analysis are shown. Full circles 
indicate significant logistic regression results, while empty circles denote cases where the odds 
ratio did not reach significance. Panel A, all significant results from univariable  analyses without 
adjustment for smoking N=13,103). Panel B, results in the multiple imputation analyses adjusted 
for smoking status (N=13,103). 
 
 A                                                          B 
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Figure 4. Distribution of driver mutations in CTNNB1 by R/E and smoking status. 
Percentage of patients harboring a driver mutation in the CTNNB1 gene predicted by boostDM, 
stratified by smoking status and R/E. Smoking status is color coded as per the legend. “Smoker” 
refers to “current or former smoker”. Only patients with measured smoking status were included 
in calculations. Imputed R/E categories are shown in the x-axis. In the case of the NH Asian 
category, we split patients by their proportions of EAS and SAS: EAS > SAS is indicated as NH 
Asian (EAS), whereas patients with SAS > EAS are designated as SAS. R/E is statistically 
significantly associated with the presence of mutations for all patients and never smoker cohorts 
(Fisher exact test, p=0.0018, and p=0.015, correspondingly). See Supplementary Table 7 for 
pair-wise statistical assessment of the differences.  
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Supplementary Materials 
Supplementary Table 1. Characteristics of patients with tumor and normal samples by 
imputed race and ethnicity category. Last column shows the results of statistical tests (as 
defined in footnote) for differences of the characteristics by imputed race and ethnicity. 
 

Characteristic 

Hispanic or 
Latino,  
N = 2911 

NH Asian,  
N = 4331 

NH Black,  
N = 7271 

NH White,  
N = 5,0201 

No Call,  
N = 491 p-value2 

Smoking status <0.001 
Former or current 
smoker 100 (52%) 163 (65%) 74 (16%) 610 (21%) 10 (29%)  

Never smoked 
tobacco 93 (48%) 86 (35%) 376 (84%) 2,309 (79%) 25 (71%)  

Unknown 98 184 277 2,101 14  

Age at specimen 
collection 66 (56, 74) 68 (60, 76) 65 (60, 72) 69 (62, 76) 65 (54, 72) <0.001 

Unknown 32 68 87 680 7  

Age at diagnosis 66 (56, 74) 68 (59, 75) 65 (60, 72) 68 (61, 75) 65 (54, 72) <0.001 

Unknown 47 79 133 942 10  
Gender 0.8 
Female 167 (57%) 238 (55%) 399 (55%) 2,728 (54%) 24 (49%)  

Male 124 (43%) 195 (45%) 328 (45%) 2,292 (46%) 25 (51%)  
Assay version 0.6 
xT.v4 238 (82%) 336 (78%) 597 (82%) 3,965 (79%) 38 (78%)  

xT.v2 23 (7.9%) 47 (11%) 60 (8.3%) 504 (10%) 6 (12%)  

xT.v3 30 (10%) 50 (12%) 70 (9.6%) 551 (11%) 5 (10%)  
Cancer stage 0.076 
Stage 1 14 (6.2%) 33 (10%) 66 (12%) 466 (12%) 5 (12%)  

Stage 2 13 (5.8%) 20 (6.2%) 25 (4.6%) 261 (7.0%) 3 (7.3%)  

Stage 3 33 (15%) 49 (15%) 88 (16%) 634 (17%) 6 (15%)  

Stage 4 166 (73%) 220 (68%) 362 (67%) 2,369 (64%) 27 (66%)  

Unknown 65 111 186 1,290 8  
Tumor grade      0.5 
Low 11 (10%) 18 (11%) 29 (11%) 225 (11%) 0 (0%)  
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Medium 43 (39%) 51 (32%) 114 (42%) 734 (37%) 9 (39%)  

High 56 (51%) 88 (56%) 130 (48%) 1,012 (51%) 14 (61%)  

Unknown 181 276 454 3,049 26  

MSI status 0.15 

Low/Stable 290 (100%) 432 (100%) 722 (99%) 
5,007 
(100%) 48 (98%)  

High 1 (0.3%) 1 (0.2%) 4 (0.6%) 13 (0.3%) 1 (2.0%)  

Unknown 0 0 1 0 0  

TMB count 
(mutations/mb) 

1.9 (1.2, 
3.9) 

1.9 (1.2, 
3.4) 

3.9 (1.9, 
7.7) 

3.4 (1.9, 
6.1) 

3.3 (1.5, 
6.9) <0.001 

Unknown 0 0 1 5 0  

Stated race <0.001 
American Indian or 
Alaska Native 3 (2.4%) 0 (0%) 0 (0%) 4 (0.1%) 0 (0%)  

Asian 0 (0%) 201 (87%) 1 (0.2%) 1 (<0.1%) 1 (4.0%)  

Black or African 
American 1 (0.8%) 0 (0%) 432 (95%) 2 (<0.1%) 7 (28%)  

Native Hawaiian or 
Other Pacific 
Islander 0 (0%) 3 (1.3%) 0 (0%) 1 (<0.1%) 0 (0%)  

Other Race 52 (42%) 17 (7.4%) 11 (2.4%) 73 (2.4%) 4 (16%)  

Race not stated 2 (1.6%) 0 (0%) 1 (0.2%) 7 (0.2%) 0 (0%)  

White 65 (53%) 10 (4.3%) 8 (1.8%) 2,985 (97%) 13 (52%)  

Unknown 168 202 274 1,947 24  
Stated ethnicity <0.001 
Hispanic or Latino 142 (93%) 5 (4.2%) 4 (2.0%) 34 (1.9%) 5 (38%)  

Not Hispanic or 
Latino 11 (7.2%) 115 (96%) 199 (98%) 1,747 (98%) 8 (62%)  

Unknown 138 313 524 3,239 36  
1 n (%); Median (IQR) 
2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's Exact Test for Count Data with 
simulated p-value (based on 2000 replicates.
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Supplementary Table 2. Cohort characteristics by smoking status. 
 

Characteristic 

Never smoked 
tobacco, N = 
1,7881 

Former or 
current smoker, 
N = 5,3451 p-value2 

Imputed race and ethnicity category <0.001 

Hispanic or Latino 184 (10%) 157 (2.9%)  

NH Asian 317 (18%) 162 (3.0%)  

NH Black 142 (7.9%) 731 (14%)  

NH White 1,128 (63%) 4,256 (80%)  

No Call 17 (1.0%) 39 (0.7%)  

Age at specimen collection 68 (59, 76) 67 (61, 74) 0.3 

Unknown 6 12  

Age at diagnosis 67 (58, 76) 67 (60, 74) >0.9 

Unknown 61 165  

Gender <0.001 

Female 1,222 (68%) 2,766 (52%)  

Male 566 (32%) 2,579 (48%)  

Assay version 0.3 
xT.v4 1,440 (81%) 4,392 (82%)  

xT.v2 160 (8.9%) 452 (8.5%)  

xT.v3 188 (11%) 501 (9.4%)  

Cancer stage <0.001 

Stage 1 147 (9.9%) 586 (13%)  

Stage 2 109 (7.3%) 333 (7.4%)  

Stage 3 207 (14%) 808 (18%)  

Stage 4 1,027 (69%) 2,794 (62%)  

Unknown 298 824  

Tumor grade <0.001 
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Low 119 (16%) 231 (9.4%)  

Medium 328 (45%) 881 (36%)  

High 279 (38%) 1,343 (55%)  

Unknown 1,062 2,890  

MSI status 0.8 
Low/Stable 1,780 (100%) 5,325 (100%)  

High 7 (0.4%) 19 (0.4%)  

Unknown 1 1  

TMB count 2.3 (1.5, 3.9) 5.0 (3.1, 8.3) <0.001 

Unknown 1 3  

Tumor/normal tissue status  
Tumor and normal 957 (54%) 2,889 (54%) 0.7 

Tumor only 831 (46%) 2,456 (46%)  

Stated race <0.001 

American Indian or Alaska Native 0 (0%) 10 (0.3%)  

Asian 185 (16%) 85 (2.3%)  

Black or African American 94 (8.0%) 521 (14%)  

Native Hawaiian or Other Pacific Islander 5 (0.4%) 2 (<0.1%)  

Other Race 79 (6.7%) 144 (3.9%)  

Race not stated 4 (0.3%) 10 (0.3%)  

White 812 (69%) 2,909 (79%)  

Unknown 609 1,664  

Stated ethnicity <0.001 

Hispanic or Latino 113 (15%) 123 (5.3%)  

Not Hispanic or Latino 665 (85%) 2,195 (95%)  

Unknown 1,010 3,027  
1 n (%); Median (IQR) 
2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's Exact Test for Count Data with 
simulated p-value (based on 2000 replicates) 
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Supplementary Table 3. Cohort characteristics by availability of smoking status. 
 

Characteristic 

Smoking status 
available, N = 
7,1331 

Smoking status 
missing, N = 
6,0631 p-value2 

Imputed race and ethnicity category 0.019 

Hispanic or Latino 341 (4.8%) 227 (3.7%)  

NH Asian 479 (6.7%) 412 (6.8%)  

NH Black 873 (12%) 708 (12%)  

NH White 5,384 (75%) 4,679 (77%)  

No Call 56 (0.8%) 37 (0.6%)  

Age at specimen collection 67 (61, 75) 71 (64, 77) <0.001 

Unknown 18 2,551  

Age at diagnosis 67 (60, 74) 71 (63, 77) <0.001 

Unknown 226 2,954  

Gender 0.001 

Female 3,988 (56%) 3,219 (53%)  

Male 3,145 (44%) 2,844 (47%)  

Assay version <0.001 

xT.v4 5,832 (82%) 5,455 (90%)  

xT.v2 612 (8.6%) 266 (4.4%)  

xT.v3 689 (9.7%) 342 (5.6%)  

Cancer stage 0.5 

Stage 1 733 (12%) 385 (13%)  

Stage 2 442 (7.4%) 244 (8.1%)  

Stage 3 1,015 (17%) 492 (16%)  

Stage 4 3,821 (64%) 1,897 (63%)  

Unknown 1,122 3,045  

Tumor grade 0.4 

Low 350 (11%) 187 (12%)  
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Medium 1,209 (38%) 589 (38%)  

High 1,622 (51%) 760 (49%)  

Unknown 3,952 4,527  

MSI status 0.2 

Low/Stable 7,105 (100%) 6,047 (100%)  

High 26 (0.4%) 15 (0.2%)  

Unknown 2 1  

TMB count 4.2 (2.3, 7.1) 4.6 (2.7, 7.3) <0.001 

Unknown 4 2  

Tumor/normal tissue status <0.001 

Tumor and normal 3,846 (54%) 2,674 (44%)  

Tumor only 3,287 (46%) 3,389 (56%)  

Stated race 0.01 

American Indian or Alaska Native 10 (0.2%) 8 (0.3%)  

Asian 270 (5.6%) 105 (4.5%)  

Black or African American 615 (13%) 236 (10%)  

Native Hawaiian or Other Pacific Islander 7 (0.1%) 5 (0.2%)  

Other Race 223 (4.6%) 106 (4.5%)  

Race not stated 14 (0.3%) 7 (0.3%)  

White 3,721 (77%) 1,881 (80%)  

Unknown 2,273 3,715  

Stated ethnicity 0.2 

Hispanic or Latino 236 (7.6%) 86 (6.4%)  

Not Hispanic or Latino 2,860 (92%) 1,257 (94%)  

Unknown 4,037 4,720  
1 n (%); Median (IQR) 
2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's Exact Test for Count Data with 
simulated p-value (based on 2000 replicates.
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Supplementary Table 4. List of LUAD genes tested for association by mutation type. Genes tested varied depending on 
availability of data and type detected by assay (e.g. gene fusions and somatic copy number alterations, SCNAs) or available 
annotations (e.g. LUAD genes included in OncoKB as L1, L2 or R1, and available LUAD boostDM gene models).  
 

Mutation type Number of genes Genes 

Protein-altering 
SNV/indels 22 

ALK, ARID1A, ATM, BRAF, CDKN2A, CTNNB1, EGFR, ERBB2, KEAP1, KRAS, MET, NF1, 
PIK3CA, RB1, RBM10, RET, ROS1, SETD2, SMARCA4, STK11, TP53, U2AF1 

SCNAs 5 CDKN2A, EGFR, ERBB2, KRAS, MET 

Gene fusions 1 ALK 

OncoKB actionable 4 BRAF, EGFR, KRAS, PIK3CA 

boostDM predicted 
drivers 10 ATM, BRAF, CTNNB1, EGFR, KRAS, NF1, PIK3CA, RBM10, STK11, TP53 
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Supplementary Table 5. Summary of likelihood ratio test results for genetic ancestry and SCNA, gene fusion, and predicted 
driver mutations. Univariable and multiple imputation analyses were performed on N=13,196 patient samples, and complete case 
analyses were performed on N=7,133 patient samples. Bold indicates statistically significant corrected p-value.  
 

Mutation 
type Gene N tests 

N (%) with 
mutation in all 

patients 

N (%) with mutation in 
patients with known 

smoking status 
Univariable analysis 

corrected p-value 

Complete Case 
analysis corrected 

p-value 

Multiple imputation 
analysis corrected 

p-value 

SCNA CDKN2A  5 1,275 (10%) 681 (10%) 0.0017 0.2036 0.0319 

Fusion ALK 1 372 (3%) 228 (3%) 8.8e-06 0.7900 0.6876 

Driver ATM 10 503 (4%) 258 (4%) 0.0024 0.1862 0.0845 

Driver BRAF 10 579 (4%) 305 (4%) 0.0089 0.1469 0.0845 

Driver CTNNB1 10 347 (3%) 175 (2%) 0.0040 0.0074 0.2123 

Driver EGFR 10 1,248 (9%) 661 (9%) 5.47E-48 1.01E-07 1.08E-17 

Driver KRAS 10 4,569 (35%) 2,411 (34%) 1.57E-36 5.21E-05 1.57E-10 

Driver NF1 10 284 (2%) 136 (2%) 0.0024 0.1469 0.0686 

Driver RBM10 10 476 (4%) 228 (3%) 0.0062 0.1862 0.0296 

Driver STK11 10 461 (3%) 252 (4%) 0.0021 0.6165 0.2014 

Driver TP53 10 4,980 (38%) 2,739 (38%) 0.0006 0.0142 0.0029 
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Supplementary Table 6. Summary of likelihood ratio test results for imputed race and ethnicity and SCNA, gene fusion, and 
predicted driver mutations. Univariable and multiple imputation analyses were performed on N=13,103 patient samples, and 
complete case analyses were performed on N=7,077 patient samples. Bold indicates statistically significant corrected p-value.  
 

Mutation 
type Gene N tests 

N (%) with 
mutation in all 

patients 

N (%) with mutation in 
patients with known 

smoking status 
Univariable analysis 

corrected p-value 

Complete Case 
analysis corrected 

p-value 

Multiple imputation 
analysis corrected 

p-value 

SCNA CDKN2A  5 1264 (10%) 675 (10%) 0.0026 0.5944 0.5266 

Fusion ALK 1 368 (3%) 225 (3%) 1.24E-11 0.4187 0.1117 

Driver ATM 10 502 (4%) 257 (4%) 8.50E-05 0.0300 0.0118 

Driver BRAF 10 575 (4%) 302 (4%) 8.50E-05 0.0026 0.0118 

Driver CTNNB1 10 345 (3%) 173 (2%) 0.0022 0.0197 0.3224 

Driver EGFR 10 1242 (9%) 657 (9%) 1.39E-63 8.43E-09 1.13E-21 

Driver KRAS 10 4540 (35%) 2394 (34%) 1.87E-57 5.61E-06 1.33E-16 

Driver NF1 10 278 (2%) 132 (2%) 0.0238 0.0978 0.0999 

Driver RBM10 10 474 (4%) 227 (3%) 1.47E-06 0.0106 5.65E-06 

Driver STK11 10 461 (4%) 252 (4%) 4.29E-09 0.0197 9.27E-05 

Driver TP53 10 4943 (38%) 2714 (38%) 4.11E-05 0.0891 0.0236 
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Supplementary Table 7. Fisher exact test for differences in the presence of CTNNB1 driver 
variants across R/E categories for all patients and stratified by current/former smokers or never 
smokers. 2-sided group test p-value under strata label; pairwise tests in cells (significant cells 
highlighted in orange). NH Asian patients were stratified by those with EAS or SAS ancestries. 
  
  

 
Hispanic or 

Latino 
NH Asian 

(EAS) 
NH Asian 

(SAS) NH Black 
All patients (p=0.001836)         
NH Asian (EAS) 0.0534 - - - 
NH Asian (SAS) 1 0.5727 - - 
NH Black 0.7588 0.0018 0.7187 - 
NH White 0.5764 5.51 x 10-05 0.7097 0.7938 
     
Current or former smoker 
(p=0.3619)     
NH Asian (EAS) 0.7453 - - - 
NH Asian (SAS) 1 1 - - 
NH Black 0.5410 0.3481 1 - 
NH White 0.3304 0.1062 1 0.5327 
     
Never smoker (p=0.01521)     
NH Asian (EAS) 0.0562 - - - 
NH Asian (SAS) 1 0.3342 - - 
NH Black 0.4398 0.3338 0.6868 - 
NH White 0.8338 0.0011 1 0.2458 
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Supplementary Figures 
Supplementary Figure 1. Directed Acyclic Graph (DAG) illustrating the causal pathways in lung adenocarcinoma 
progression. The graph delineates the relationships between race/ethnicity, genetic ancestry, gender, and key variables such as 
smoking, social determinants of health (SDOH), environmental and genetic exposures, and their collective impact on somatic 
mutations in genes. The downstream effects on cancer diagnosis, access to healthcare, and tumor sequencing are also represented. 
Dark blue shapes indicate variables that are controlled for in regression analysis or by selection into the study. 
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Supplementary Figure 2. Correlation of clinical and somatic mutation data with smoking status. Panel A spearman correlation 
between clinical variables. Panel B spearman correlation between somatic mutation counts among genes and smoking status. Group 
1, short protein altering variants; Group 2, SCNAs; Group 3, gene fusions, Set 1, OncoKb actionable variants; Set 5 BoostDM 
predicted drivers. Only cases with complete smoking status are included. 
 
 
A          B 
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Supplementary Figure 3. Proportion of patients with protein-altering variants in LUAD genes with respect to R/E and 
smoking status. Panel A: Fraction of patients carrying somatic protein-altering variants in selected LUAD genes (cf. Methods) with 
respect to imputed R/E categories. Panel B: raction of patients carrying somatic preten-latering variants in selected LUAD genes (cf. 
Methods) with respect to smoking status (only patients with available smoking status included).  
 
 
 
A 
 
 
 
 
 
 
 
 
B
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Supplementary Figure 4. Convergence plots for multiple imputation. The mean and standard deviation (SD) for each of the 
imputed variables at each iteration of multiple imputation using MICE is shown. Variables included: Region, US geographical region 
of patient home address; Age at collection of tissue; TMB count (mutations/Mb); Tumor grade; Cancer stage; Smoking status, current 
(smoking), former smoker (ever), or never a smoker (never). 
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Supplementary Figure 5. Distribution of values of multiply imputed categorical variables. 
The first bar (0) shows the distribution of measured categorical variables, remaining bars are 
data for  each of the 10 imputed datasets (1-10). Regions: US geographical regions of patient 
home address.  
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Supplementary Figure 6. Distribution of multiply imputed smoking status by imputed 
race and ethnicity category. The first bar (0) shows the distribution of measured smoking 
status, subsequent bars show values for each of the 10 imputed datasets (1-10). 
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Supplementary Figure 7. Forest plots for associations between genetic ancestry and 
imputed R/E with SCNAs, gene fusions, and driver somatic mutations adjusted for 
smoking for complete case analysis (n=7,133). The odds ratios (depicted as circles) and 
95% confidence intervals (represented by horizontal lines) are shown for LUAD genes that met 
our criteria and displayed significant likelihood ratio tests (LRT) after adjusting for multiple 
testing at least in the univariable analysis. Colors representing ancestries as per color legend, 
full circles indicate significant logistic regression results, while empty circles denote cases where 
the odds ratio did not reach significance. Panel A, results for associations with genetic ancestry. 
Panel B, results for associations with imputed R/E categories using NH White as the reference 
group. 
 
 A                                                                     B 



16 

Supplementary Figure 8. Forest plots for associations between genetic ancestry and actionable and protein-altering 
somatic mutations. The odds ratios (depicted as circles) and 95% confidence intervals (represented by horizontal lines) are shown 
for LUAD genes that met our criteria and displayed significant likelihood ratio tests (LRT) at least in the univariable analysis. Colors 
represent ancestries as per color legend, full circles indicate significant LRT results, while empty circles denote cases where the 
odds ratio did not reach significance after adjusting for multiple testing. Actionable mutations, OncoKB Level 1, 2, and R1. Panel A, 
significant findings from univariable analyses without adjusting for smoking (n=13,196). Panel B, results from complete case analyses 
adjusted for smoking status (n=7,133). Panel C, results after adjusted for smoking status derived from multiple imputation 
(n=13,196). 
 
       A              B                        C 
  



17 

Supplementary Figure 9.  Forest plots for associations between imputed R/E categories and actionable and protein-altering 
somatic mutations.  Odds ratios (circles) and 95% confidence intervals (horizontal lines) for imputed race and ethnicity associations 
with somatic mutations using NH White as the reference group. Full circles indicate significant LRT results, while empty circles 
denote cases where the odds ratio did not reach significance after adjusting for multiple testing. Actionable mutations, OncoKB Level 
1, 2, and R1. Panel A, all significant results from univariable analyses without adjustment for smoking. Panel B, results in the 
complete case analyses adjusted for smoking status. Panel C, results in the multiple imputation analyses adjusted for smoking 
status. 
 
  A            B                            
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