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Abstract 1 

Background: Large Language Models (LLMs) are increasingly being explored for medical 2 

applications, particularly in emergency triage where rapid and accurate decision-making is crucial. 3 

This study evaluates the diagnostic performance of two prominent Chinese LLMs, "Tongyi 4 

Qianwen" and "Lingyi Zhihui," alongside a newly developed model, MediGuide-14B, comparing 5 

their effectiveness with human medical experts in emergency chest pain triage. 6 

Methods: Conducted at Peking University Third Hospital's emergency centers from June 2021 to 7 

May 2023, this retrospective study involved 11,428 patients with chest pain symptoms. Data were 8 

extracted from electronic medical records, excluding diagnostic test results, and used to assess the 9 

models and human experts in a double-blind setup. The models' performances were evaluated 10 

based on their accuracy, sensitivity, and specificity in diagnosing Acute Coronary Syndrome 11 

(ACS). 12 

Findings: "Lingyi Zhihui" demonstrated a diagnostic accuracy of 76.40%, sensitivity of 90.99%, 13 

and specificity of 70.15%. "Tongyi Qianwen" showed an accuracy of 61.11%, sensitivity of 14 

91.67%, and specificity of 47.95%. MediGuide-14B outperformed these models with an accuracy 15 

of 84.52%, showcasing high sensitivity and commendable specificity. Human experts achieved 16 

higher accuracy (86.37%) and specificity (89.26%) but lower sensitivity compared to the LLMs. 17 

The study also highlighted the potential of LLMs to provide rapid triage decisions, significantly 18 

faster than human experts, though with varying degrees of reliability and completeness in their 19 

recommendations. 20 

Interpretation: The study confirms the potential of LLMs in enhancing emergency medical 21 

diagnostics, particularly in settings with limited resources. MediGuide-14B, with its tailored 22 



4 

 

training for medical applications, demonstrates considerable promise for clinical integration. 1 

However, the variability in performance underscores the need for further fine-tuning and 2 

contextual adaptation to improve reliability and efficacy in medical applications. Future research 3 

should focus on optimizing LLMs for specific medical tasks and integrating them with 4 

conventional medical systems to leverage their full potential in real-world settings. 5 

  6 
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Introduction 1 

Large Language Models (LLMs) are revolutionizing the medical field, particularly in accelerating 2 

pre-hospital triage1-10. These models leverage deep learning and natural language processing 3 

technologies to capture patterns and relationships in text through multi-layer neural network 4 

architectures, enabling efficient processing and precise understanding of vast medical data4-11. 5 

Trained on extensive text data, LLMs have acquired a wealth of vocabulary, grammar, semantics, 6 

and a condensed vast knowledge system, allowing them to respond coherently and accurately to 7 

various symptom descriptions, medical history information, and literature queries provided by 8 

users 12-15. Importantly, as the model parameters and training data volume increase, scientists have 9 

observed significant "emergence abilities" in LLMs16-18. This ability is not only reflected in the 10 

efficient processing of complex information but also in their superior performance in logical 11 

reasoning and innovative thinking19. This gives LLMs unique advantages in simulating human 12 

thought patterns, understanding, and applying knowledge, especially in the field of medical 13 

diagnostic assistance20,21.  14 

Globally, especially in remote areas of developing and developed countries, there is a severe 15 

shortage of primary healthcare resources, characterized by insufficient facilities, lack of 16 

professional personnel, and financial constraints22,23. Trained medical providers, including doctors, 17 

nurses, and other community health workers, are scarce, making it difficult to provide high-quality 18 

primary healthcare services, further exacerbating the imbalance of medical human resources 19 

between urban and rural areas24. Traditional clinical prediction models based on machine learning 20 

or deep learning, despite having theoretical application prospects, are rarely deployed in actual 21 

clinical practice. The main reason is that these models generally lack generalizability and cannot 22 
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effectively handle the complex and variable actual clinical data, and the required parameters are 1 

often not easily obtained in clinical settings25. In contrast, LLMs, with their strong information 2 

integration and logical reasoning abilities, extensive knowledge reserves, and seamless integration 3 

with human language, can overcome these challenges. 4 

In medical diagnostic assistance scenarios, the value of LLMs is particularly prominent. 5 

Traditional diagnostic models often struggle to cope with patients' complex symptom expressions, 6 

intricate medical histories, and vast medical literature due to limited processing capacity or 7 

insufficient knowledge coverage. LLMs, with their vast training data and deep learning 8 

architectures, can quickly organize and integrate various clinical information, using their 9 

embedded extensive medical knowledge base to accurately classify and analyze diseases8,9. 10 

Furthermore, LLMs' logical reasoning ability allows them to conduct in-depth analysis of complex 11 

disease clues, construct disease progression path models, predict potential complications, and 12 

provide doctors with detailed and in-depth diagnostic support. 13 

However, a cautiously optimistic attitude should be maintained towards the application of LLMs 14 

in the medical environment, fully recognizing their limitations. These limitations include but are 15 

not limited to: potential bias in training data, which may lead to unfairness in model 16 

decision-making; challenges in explaining complex medical details, which may affect the 17 

understanding and trust of doctors and patients in model outputs; and the risk of misdiagnosis due 18 

to over-reliance on technology without necessary human supervision. Therefore, while affirming 19 

the transformative potential of LLMs in healthcare, it is also crucial to focus on and address these 20 

challenges to ensure their application in medical diagnostics is both safe and effective. 21 

A noteworthy challenge arises when applying LLMs to languages such as Chinese, Japanese, 22 
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Korean, Tamil, Hindi, Thai, and Vietnamese, which employ "non-segmented text" structures that 1 

markedly differ from English in terms of grammar, syntax, and usage. Most research endeavors 2 

have predominantly concentrated on English-centric models like ChatGPT, leaving a notable 3 

research gap in evaluating the diagnostic proficiencies of large language models trained 4 

specifically for non-English environments26,27. Although English and 'non-segmented text' 5 

languages share similar fundamental principles in the development of LLMs, they face distinct 6 

technical and engineering challenges in practical applications due to differences in language 7 

characteristics and available resources. This leads to variations in their implementation and 8 

performance. We must consider the fundamental differences in grammatical structures, data 9 

resources, vocabulary size and distribution, algorithmic implementation and optimization, as well 10 

as the adaptability of technical architectures across different languages. This research gap impacts 11 

the broad adoption of these models in diverse linguistic contexts and profoundly influences the 12 

level of trust vested in LLMs.  13 

The emergency medical setting is distinguished by its immediacy, intricate clinical presentations, 14 

and the imperative need for prompt diagnosis28. The environment of emergency room is often 15 

dynamic, extremely busy, and high-pressure, requiring healthcare personnel to make rapid 16 

decisions and handle multiple cases simultaneously29. A study in 2019 found that the average wait 17 

time for emergency department patients was approximately 40 minutes before being seen by a 18 

physician, with doctors spending an average of 13-24 minutes per patient during the consultation 19 

30-32. Emergency triage systems are used globally to assess patient severity and allocate 20 

resources33-35. The US uses Emergency Severity Index (ESI), a 5-tier system. China uses 21 

Emergency Triage Scale/Standard (ETS), a 4-tier system. ETS is like ESI, with levels 1&2 triaged 22 



8 

 

to resuscitation. Patients in levels 3&4 wait to see a physician. Though ETS is generally accurate, 1 

some critical patients wait hours and misdiagnosis is a pronounced concern, as research 2 

underscores a notably elevated misdiagnosis rate within the emergency room 36,37. This issue is 3 

exacerbated, particularly for common symptoms associated with myocardial ischemia, which are 4 

susceptible to oversight or misjudgment 38. The guidelines recommend reperfusion therapy within 5 

12 hours of the onset of myocardial infarction39,40, yet approximately 70% of acute myocardial 6 

infarction patients succumb to the disease due to the missed opportunity for timely treatment 41, 7 

highlighting the risk of misdiagnoses leading to treatment delays. LLMs stand poised to bring 8 

about significant transformations in specific medical contexts, notably expediting pre-hospital 9 

triage procedures. We see potential in these models to facilitate rapid triage by assisting healthcare 10 

providers in swiftly processing patient data and offering potential diagnoses rooted in symptoms, 11 

medical histories, and pertinent literature.  12 

The medical profession demands precise and dependable tools for informed decision-making. 13 

While LLMs hold potential, they present difficulties in understanding context and obtaining 14 

clarifications42-47. Addressing real-world medical issues requires handling multiple data modalities 15 

and must also provide authenticity, authority, accessibility, safety, empathy, and a human touch48. 16 

Real-world medical problems often transcend the confines of multiple-choice tests and structured 17 

tasks. The human or AI model approach to diagnostic interaction, whether single or multi-turn 18 

dialogues and their ability to process various data modalities are equally important. Indeed, 19 

evaluating these vast medical models might not be any simpler than developing them.  20 

Standardized testing has largely evaluated these models' medical knowledge reserves and 21 

diagnostic logical reasoning capabilities2,6,8,49. However, medical issues in the real world often 22 
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surpass the scope of structured tasks and multiple-choice tests, exhibiting greater complexity and 1 

uncertainty7,50. Currently, there is a particular lack of systematic evaluation globally on the 2 

effectiveness of large language models in real medical environments, especially based on rich, 3 

diverse, and dynamically changing real medical data51.  4 

In this study, we focused on evaluating two prominent Chinese language models, "Tongyi 5 

Qianwen (通
千
) (V1.0.3 )"and "Lingyi Zhihui (灵医智慧) (V2.2.0 )"52-54, which are 6 

developed based on a Transformer's autoregression framework, akin to other globally recognized 7 

models like Meta's LLaMa Series, Google's PaLM and LaMDA, and OpenAI's ChatGPT series. 8 

As general-purpose large models, they have not been specifically fine-tuned for the medical 9 

domain and are currently offered as online services by their respective operators. One of the core 10 

objectives of our research is to conduct a comprehensive evaluation of these two models using 11 

case data from Chinese patients, focusing particularly on their performance in processing Chinese 12 

medical contexts, given that they are primarily trained on Chinese datasets, although they also 13 

incorporate a certain proportion of English data. A key component of the study is a comparative 14 

analysis of the diagnostic accuracy of "Tongyi Qianwen" and "Lingyi Zhizhi" in handling complex 15 

and urgent medical data, benchmarking their results against medical experts' judgments. Targeted 16 

enhancements and optimizations were applied to the fine-tuning and alignment phases, 17 

particularly for LLMs tasked with medical applications. Recognizing the performance variability 18 

of LLMs underscores the importance of meticulously establishing benchmarks that are apt for 19 

medical artificial intelligence. We further integrated the insights gained from the benchmark 20 

conducted into developing a new model called MediGuide-14B.  21 

Methods 22 



10 

 

Study Design and Setting    1 

This retrospective study was conducted at the Emergency Chest Pain Centers of the Peking 2 

University Third Hospital Group, involving five tertiary-level centers. The study received ethical 3 

approval from the ethics committee of Peking University Third Hospital (M2023828), complying 4 

with the Helsinki Declaration. 5 

Data Sources 6 

Chief complaints, current medical history, past medical history, family history, and personal 7 

history were extracted from electronic medical records as unstructured text content. It is important 8 

to note that diagnostic test results such as electrocardiograms, myocardial enzyme tests, and 9 

echocardiograms were not included in the test dataset provided to the test model and the control 10 

group. Confirmed diagnostic information and related evidence were only made available during 11 

the subsequent double-blind evaluation phase to the expert review committee, which served as the 12 

authoritative reference standard. This approach aimed to ensure that experts could conduct 13 

accurate and fair comparative analyses of the diagnostic accuracy of each group by combining 14 

comprehensive and detailed medical test data with the model's predictive results. 15 

Participants 16 

The inclusion criteria for this study were patients who visited the emergency chest pain center at 17 

Peking University Third Hospital's five tertiary-level centers due to chest pain-related symptoms 18 

between June 2021 and May 2023. The exclusion criteria were: 1.Cases with significant omissions 19 

or incompleteness in medical records, such as missing key clinical assessment records or essential 20 

auxiliary examination results, which are crucial for a comprehensive patient evaluation; 2. Cases 21 

where the chief complaint information did not come directly from the patients themselves due to 22 
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unstable vital signs or other reasons but was obtained through the accounts of others, making it 1 

difficult to accurately trace and complete. Given that such situations could affect the credibility of 2 

the study results due to the one-sidedness of the information or decreased accuracy of symptom 3 

description, these cases were excluded in the analysis process. Ultimately, 11,428 patients who 4 

met the above inclusion and exclusion criteria were included in the study.  5 

Outcome 6 

The study employed repeated random sampling for case selection, using Python 3.8 to randomly 7 

select 100 patient cases from the database, repeated 1000 times. This method ensured a diverse 8 

and random sample, reducing potential bias. All medical records were anonymized to maintain 9 

patient privacy, further minimizing selection bias and enhancing the generalizability of the 10 

findings. 11 

The primary outcome of this study was the accuracy of diagnosing Acute Coronary Syndrome 12 

(ACS). The study used LLMs prompts that included patient demographics, clinical symptoms, and 13 

medical history, which are commonly found and critically important in primary healthcare and 14 

emergency scenarios. This approach mimics the situations where lab results are not yet available, 15 

and doctors and medical professionals must rely solely on the patient's chief complaints and past 16 

medical history to triage chest pain and provide rapid management. In the study, the 17 

cardiovascular physicians' group also followed the same information dimensions and problem 18 

structure as the LLMs for case analysis. These cardiology specialists, during the diagnostic 19 

process, similarly needed to interpret each case based on the patient's age, gender, chief complaint, 20 

present illness history, family history, and personal history, and make diagnostic and therapeutic 21 

decisions accordingly. 22 
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Study Size 1 

To ensure a statistical power of 0.8 and effectively compare the diagnostic accuracy between 2 

human medical experts and Large Language Models (LLMs) optimized for the medical 3 

environment, it is necessary to determine an appropriate sample size. Based on preliminary data 4 

and relevant literature, the diagnostic accuracy of human experts usually falls within the range of 5 

0.9 to 0.95, while the accuracy of general-purpose LLMs not specifically trained is between 0.7 6 

and 0.8. LLMs that have been optimized for the medical field have improved their accuracy to 7 

levels comparable to human experts, although there may still be slight differences between the 8 

two55. In this context, to ensure a statistical power of 0.8, sufficient to detect the potential small 9 

difference in accuracy between human experts and optimized LLMs, we calculated that each 10 

group needs approximately 3835 samples. This sample size ensures that even minor differences in 11 

accuracy can be detected with an 80% probability in statistical tests. 12 

Considering the study subjects, we selected five centers affiliated with Peking University Third 13 

Hospital, each of which receives about 5000 patients with chest pain annually. Given that clinical 14 

data often have high noise, sparsity, and heterogeneity, which not only increase the difficulty of 15 

data analysis but also may affect the robustness of the research conclusions, we decided to set the 16 

study period from June 2021 to May 2023, totaling two years. This time frame was chosen to 17 

accumulate sufficient case data, overcome the inherent complexity of clinical data, and ensure the 18 

effectiveness and reliability of the final statistical analysis. 19 

Figure 1 illustrates the flow chart of the entire study. The sample size of 11,428 records was 20 

determined based on the hospital's patient flow and data availability during the study period. This 21 



13 

 

size was deemed sufficient to provide a robust analysis of the LLMs' diagnostic performance. 1 

(Figure 1) 2 

LLMs: 3 

"Tongyi Qianwen," developed by Alibaba Group, is a 100 billion-parameter model with a diverse 4 

data foundation, including web texts and specialized literature, and utilizes advanced 5 

reinforcement learning techniques like A2C/A3C and PPO, and Q-learning methods such as DQN 6 

and C5156,57. 7 

"Lingyi Zhihui," created by Baidu Group for medical contexts, has 260 billion parameters. It 8 

combines auto-regressive and auto-encoding frameworks, suited for natural language 9 

understanding and generation, and supports zero-shot, few-shot learning, and detailed 10 

fine-tuning58,59.  11 

Diagnostic performance:  12 

The anonymized dataset, excluding lab test results, was analyzed by "Tongyi Qianwen," "Lingyi 13 

Zhihui," and a group of human experts. The human experts were eight cardiovascular specialists 14 

with over ten years of experience, certified by the Chinese Society of Cardiology and the Chinese 15 

Medical Association. Both LLMs and human experts were given detailed patient information 16 

encompassing age, gender, chief complaints, present illness, and medical history. In this study, all 17 

participants underwent comprehensive training before commencement to ensure a thorough 18 

understanding of the research process. During the actual testing phase, we observed and recorded 19 

the time taken by each diagnostic group to complete a test unit containing 100 medical case 20 

records. 21 

Prompt Engineering： 22 
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For large language models, appropriate prompts are necessary to activate their respective 1 

capabilities. (Supplementary Table S1) 2 

The prompt is: "1. Based on the patient's basic information, chief complaint, symptoms, and 3 

medical history, what do you consider to be the patient's diagnosis? 2. Considering your 4 

considered diagnosis, what further tests and medical advice would you recommend? 3. Please 5 

evaluate the risk of the patient's condition based on the above patient information".  6 

Similarly, a group of human experts will respond to the same questions based on the patient's basic 7 

information, chief complaint, symptoms, and medical history. 8 

Reference standards:  9 

The gold standard of final diagnosis was the consensus of an independent cardiology expert panel 10 

with 20 years of clinical service experience following Chest Pain Management Guidelines38,60,61. 11 

This panel had full access to patient records and cardiovascular lab test results, ensuring a 12 

comprehensive and authoritative standard for comparison. The definitive diagnosis for cases 13 

where there was uncertainty was established using Voting Mechanisms. (Figure 1) 14 

Statistical analysis:  15 

The statistical analysis in this study was conducted using the SPSS 27.0 statistical package for 16 

Windows, Python version 3.8, and R software version 4.2.2, provided by the R Foundation for 17 

Statistical Computing. All continuous variables that adhered to a normal distribution were 18 

represented as means with their 95% confidence intervals (CI). To identify initial differences in 19 

baseline characteristics between treatment groups, bivariate analyses were performed utilizing 20 

Student's t-test. For comparative analyses among multiple groups, a one-way ANOVA test was 21 

employed. A p-value of less than 0.05 was designated as the threshold for statistical significance. 22 
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In assessing the differences in diagnostic efficacy for cardiovascular diseases among the study 1 

groups, this research employed a comprehensive and multifaceted set of evaluation metrics, 2 

including Accuracy, Sensitivity, Specificity, False Positive Rate (FPR), Recall, and confusion 3 

matrix diagrams among other multidimensional indicators. These multidimensional indicators 4 

together form a rigorous and comprehensive performance evaluation framework, aimed at 5 

comprehensively comparing and assessing the strengths and weaknesses of each study group in 6 

terms of diagnostic accuracy and effectiveness. 7 

Before evaluating the diagnostic metrics of each group, the study initially assessed the distribution 8 

characteristics of the results from 1000 test units in each group using probability density curves, 9 

P-P plots, and Q-Q plots to conduct normality tests. 10 

The Development of MediGuide-14B 11 

MediGuide-14B is developed on the foundation of the Qwen-14B model, undergoing extensive 12 

optimization and specialized transformation through a meticulously crafted medical data training 13 

and tuning program. Qwen-14B boasts 14 billion model parameters, endowing it with powerful 14 

learning capabilities, ample knowledge reserves, and robust logical reasoning. During its 15 

foundational training, Qwen-14B assimilated knowledge from over three trillion tokens, spanning 16 

Chinese, English, and various other languages, including specialized domains like programming 17 

and mathematics. Qwen-14B excels in natural language understanding, mathematical 18 

problem-solving, logical reasoning, and computer programming. This base model supports 19 

comprehensive fine-tuning, allowing for deep and customized adjustments tailored to various 20 

tasks and domains. 21 

The special medical database built by the research team includes detailed medical records of 22 
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105,290 outpatients and inpatients, totaling 2 million pieces of professional medical data that have 1 

been carefully cleaned and protected for privacy. The training of MediGuide-14B is completed on 2 

a high-performance server equipped with A800 80G*8. Leveraging the power of the DeepSpeed 3 

framework and the Transformer architecture, we have optimized MediGuide-14B for better 4 

performance and efficiency. This is crucial in handling the complexities and nuances of medical 5 

diagnostics. The integration of Cross-Entropy Loss function and Reinforcement Learning from 6 

Human Feedback (RLHF) in the training process further refines the model’s accuracy and 7 

human-like understanding, addressing the high sensitivity yet lower specificity issue identified in 8 

previous models.  9 

Role of the Funding Source: 10 

In the design of the study; collection, analysis, and interpretation of data; writing of the report; and 11 

the decision to submit the paper for publication, the study sponsors had no involvement. All 12 

responsibilities and decisions regarding the research were made independently by the authors. 13 

Results  14 

Overview of Study Population 15 

In the study involving 11,428 individuals who presented with emergency chest pain, after initially 16 

assessing 12,015 potential participants, 587 were excluded due to significant gaps in their medical 17 

records or indirect patient complaints. The study group had an average age of 64.82 years, with a 18 

broad age distribution from 15 to 101 years, highlighting a significant elderly presence, underlined 19 

by a median age of 67 years. Men constituted 65.4% of the participants. 20 

The average Body Mass Index (BMI) for the cohort was 25.41, with a standard deviation of 3.69. 21 

Medical evaluations revealed an average systolic blood pressure of 124.28 mmHg, diastolic blood 22 



17 

 

pressure of 75.35 mmHg, and heart rate of 70.38 bpm. The patient histories showed varying 1 

prevalences of conditions: 8.7% had chest pain, 15.3% experienced dyspnea or chest tightness, 2 

and 3.7% had episodes of syncope. Additionally, there were notable rates of chronic conditions, 3 

including diabetes (7.9%), hypertension (23.5%), and hyperlipidemia (17.3%). Lifestyle factors 4 

were also recorded, with 18.9% having a smoking history and 15.3% with a history of alcohol 5 

consumption. In terms of emergency severity, 2.8% of cases were classified as critical or severe, 6 

while 14.7% were urgent, and the majority, 82.5%, were less urgent. The diversity of 7 

cardiovascular conditions was evident in the primary diagnoses. (Supplementary Table S2) 8 

The disease composition spectrum of 11,428 patients was analyzed based on the "primary 9 

diagnosis" of discharge diagnosis. The most common cardiovascular issues were NSTEMI/UA 10 

Unstable Angina (24.3%), followed by Stable Angina Pectoris (14.8%) and STMI (7.4%). Other 11 

cardiovascular diagnoses included Chronic Coronary Syndrome, Aortic Dissection, and Acute 12 

Pulmonary Embolism. Hypertensive emergencies varied in severity and risk, with a range of 13 

stages and risks documented. Arrhythmias formed a significant part of the diagnoses, with 14 

conditions like Paroxysmal and Persistent Atrial Fibrillation, Atrial Flutter, and 15 

Wolff-Parkinson-White Syndrome being prevalent. Heart failure variants were also noted, along 16 

with other cardiac conditions such as Old Myocardial Infarction and Aortic Valve Insufficiency. 17 

This detailed assessment underscores the wide spectrum of cardiovascular diseases managed in the 18 

emergency setting, reflecting the complexity and diversity of the patient population. 19 

(Supplementary Table S3) 20 

Performance of LLM 21 

We assessed the normality of the LLM's performance distribution using kurtosis, skewness, 22 
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probability density curve, P-P diagram, and Q-Q diagram. (Supplementary Figure S1) 1 

Our analysis confirmed a normal distribution without significant outliers. Regarding the diagnosis 2 

efficacy, "Tongyi Qianwen" achieved an accuracy of 61.11% (95% CI:60.84%-61.29), with a 3 

sensitivity of 91.67% (95% CI:91.37%-91.96%) and a specificity of 47.95% (95% 4 

CI:47.65%-48.25%). "Lingyi Zhihui" demonstrated an accuracy of 76.40% (95% 5 

CI:76.17%-76.63%), with a sensitivity of 90.99% (95% CI:90.67%-91.31%) and a specificity of 6 

70.15% (95% CI:69.85%-70.44%). The human experts were asked to perform the diagnostic test 7 

based on the same content fed to LLMs. A total of 8 physicians completed this task. Human 8 

experts achieved a mean accuracy of 86.37% (95% CI:86.18%-86.55%), a sensitivity of 79.62% 9 

(95% CI:79.20%-80.04%), and a specificity of 89.26%(95% CI:89.06%-89.46%)（Table 1）. 10 

The language models " Tongyi Qianwen "and "Lingyi Zhihui" completed the task in 24.68±2.23 11 

and 28.75±3.25 minutes, respectively. On the other hand, human physicians completed the task 12 

within a range of 65.25±10.45 minutes (Figure 1a). 13 

We plotted the parameters of diagnostic performance using radar charts. The area under the curve 14 

for "Lingyi Zhihui" was 8094.76 units, which was more significant than the 5597.88 units for 15 

"Tongyi Qianwen". However, human experts had the best overall performance, totaling 9393.36 16 

units (Figure 2a). The area for "Tongyi Qianwen" performance primarily spans over the 17 

"Sensitivity" region but is relatively smaller in the "Specificity" and "Accuracy" regions. "Lingyi 18 

Zhihui" had a larger area in all three parts compared to "Tongyi Qianwen", especially in the 19 

"Specificity" domain. The area for human experts was substantial in both the "Specificity" and 20 

"Accuracy" regions but slightly smaller in the "Sensitivity" domain. 21 

Both "Tongyi Qianwen" and "Lingyi Zhihui" demonstrated a high level of sensitivity, 22 
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indicating their capability to detect the majority of true ACS cases. However, their specificity was 1 

comparatively lower, implying the potential for misclassifying some non-ACS cases as ACS. High 2 

sensitivity is pivotal in screening tools, as they aim to identify the most genuine cases, even at the 3 

risk of producing some false positives. Ensuring the accurate detection of real diseases or 4 

abnormalities is a critical attribute of screening tools. Consequently, LLMs are well-suited as 5 

screening tools, particularly in life-threatening emergency scenarios. In such situations, the 6 

primary goal during screening is to identify as many true cases as possible, minimizing the risk of 7 

overlooking vital information. However, it's important to acknowledge that a trade-off exists 8 

between high sensitivity and specificity, meaning that while a screening tool can capture most 9 

genuine cases, it may also generate some false positives (false alarms), which must be carefully 10 

considered. (Figure 2 b. c) 11 

"Tongyi Qianwen" model achieved a true positive rate (TPR) of 91.67% and a concomitant 12 

false positive rate (FPR) of 52.05%. The model's accuracy is 43.10%, consistent with its recall. On 13 

the other hand, "Lingyi Zhihui" shows that its TPR and recall rate are both 90.99%, but its FPR is 14 

significantly reduced to 29.85%, and its accuracy rate is 56.87%. In contrast, the human expert's 15 

TPR was 79.62%, the FPR was reduced considerably to 10.74%, and the accuracy was 76.34%, 16 

consistent with its recall rate (Figure 2b). 17 

Among the cases misdiagnosed as ACS by the "Tongyi Qianwen" test, approximately 7.34% 18 

(95% CI: 7.07%-7.60%) were eventually diagnosed as aortic dissection, and 3.45% were 19 

diagnosed as acute pulmonary embolism according the reference standard (95% CI: 20 

3.26%-3.63%). The rest were other non-ACS diseases with chest pain manifestations. Among the 21 

cases misdiagnosed as ACS by the "Lingyi Zhihui", the average proportion of cases that were 22 
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eventually diagnosed as acute aortic dissection was approximately 9.14% (95% CI: 8.83%-9.44%). 1 

The average proportion of patients who were eventually diagnosed with acute pulmonary 2 

embolism was 2.83% (95% CI: 2.63%-3.03%). 3 

Although human experts presented higher accuracy, there were still some cases misdiagnosed. 4 

Among the total cases misdiagnosed as ACS by human experts, acute aortic dissection accounted 5 

for 5.27% (95% CI: 4.80%-5.74%) and acute pulmonary embolism accounted for 0.96% (95% CI: 6 

0.74%-1.18%). The discrepancies among LLMs and human experts are statistically significant. 7 

(Supplementary Figure S2) 8 

Advancements in Medical Large Language Models: The Performance of MedGuide-13B 9 

After evaluating the performance of various commercially available closed-source Large 10 

Language Models in medical diagnostics, we enhanced their capabilities by improving model 11 

architecture, refining algorithms, and boosting fine-tuning and alignment techniques to increase 12 

accuracy and reduce misdiagnoses. From these comprehensive benchmarks, we distilled key 13 

insights that provided a solid foundation for the development of new language models. 14 

Consequently, we developed the MediGuide-14B model, which was derived by making precise 15 

adjustments to the Qwen-14B base model. The Qwen-14B model, known for its strong natural 16 

language understanding and problem-solving capabilities, served as an ideal starting point for the 17 

development of MediGuide-14B. 18 

In the development process of MediGuide-14B, we first meticulously analyzed the issues 19 

encountered by existing commercial general-purpose large language models when executing 20 

medical tasks and accordingly implemented a series of targeted parameter optimizations to 21 

enhance their performance in the healthcare domain. In the initial phase, our focus was on 22 
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bolstering the model’s understanding of medical terminology. This involved expanding the 1 

medical professional vocabulary database and refining the model’s processing mechanisms for 2 

these terms. During fine-tuning, we incorporated multi-turn dialogue data derived from real-world 3 

medical scenarios involving 300,000 patients, significantly enhancing the model’s professionalism 4 

and accuracy within medical contexts. 5 

Employing supervised fine-tuning (Supervised Fine-Tuning, SFT), the fine-tuned large model 6 

showed a significant improvement in accuracy when dealing with professional medical texts 7 

compared to the original model. Subsequently, during the alignment process of the large model, 8 

we introduced reinforcement learning from human feedback technology (Reinforcement Learning 9 

from Human Feedback, RLHF) to guide the output distribution of the large model. We solicited 10 

feedback and optimization from medical experts on the model’s outputs, thereby creating a 11 

contrastive dataset imbued with human preferences, ensuring that the decision-making process of 12 

the large model not only fully leverages its reasoning capabilities but also aligns with the 13 

judgment standards of medical professionals. A reward model (Reward Model, RM) was trained 14 

on this dataset, and reinforcement learning techniques were used to conduct further fine-tuning 15 

alignment. 16 

The aligned model (aligned model) following this process demonstrated a substantial 17 

enhancement in its generalization ability when handling actual medical data, closely adhering to 18 

the practical needs of medicine and effectively improving the accuracy of complex case analysis. 19 

Lastly, in the model’s inference process, we employed a chain-of-thought decomposition method 20 

where complex medical scenario questions posed by users were finely dissected to accurately 21 

capture key information. This helped the model better comprehend the core content and logical 22 
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structure of the problem, thereby enhancing both the accuracy and relevance of its responses. After 1 

such granular decomposition, the model independently analyzed each sub-problem before 2 

synthesizing answers from all sub-problems to form a comprehensive and logically coherent final 3 

answer. 4 

Through the above-mentioned parameter optimizations and adjustments tailored for medical tasks, 5 

MediGuide-14B has achieved a 44% improvement in capability over its predecessors. 6 

(Supplementary Figure S3) 7 

To assess the efficacy of large language models in diagnosing cardiovascular diseases, we 8 

constructed the CVIDB test set, comprising 1,233 single-choice questions and 203 multiple-choice 9 

questions. This standardized and high-quality test set provides detailed explanations for each 10 

question, offering insights into the reasoning behind the correct answers and enhancing learning 11 

and understanding of complex topics. The test set covers various subtypes, developmental stages, 12 

and related complications and comorbidities of cardiovascular diseases, effectively testing the 13 

depth and breadth of large language models' understanding of the field. We have made this test set 14 

publicly available on GitHub for researchers and developers to download free of charge. The 15 

access link is: https://github.com/mengxiangbin123/CVIDB.git  16 

After completing the training and development of the MediGuide large model, we conducted a 17 

series of standardized assessments, including several important medical benchmark tests. These 18 

tests are55,62,63: USMLE, a repository of simulated questions for the United States Medical 19 

Licensing Examination; MedMCQA, a large-scale medical multiple-choice question dataset 20 

covering various disciplines, derived from medical entrance exams in India; CMC, a large-scale 21 

multitask knowledge assessment benchmark focusing on Chinese medical knowledge; and 22 
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MCMLE, a simulation of the Chinese medical qualification exam; along with the cardiovascular 1 

disease-specific benchmark test set, CVIDB. These resources aim to comprehensively evaluate the 2 

performance and generalization ability of large language models in medical knowledge and 3 

clinical decision-making skills. We compared the performance of MediGuide-14B (V5.0) with 4 

other leading models in the industry, including ChatGPT-4, ChatGPT-3.5 Turbo, Tongyi Qianwen 5 

(v1.0.3), Lingyi Zhihui (v2.2.0), LLaMA 2-14B, and Qianwen-14B -Base.  6 

Focusing on the United States Medical Licensing Examination (USMLE), ChatGPT-4 7 

demonstrated superior performance with a score of 80.28%, closely followed by MediGuide-14B 8 

at 78.63%, while LLaMA 2-13B trailed significantly with only 35.04%. For the MedMCQA, 9 

which consists of multiple-choice questions from Indian medical entrance exams, ChatGPT-4 10 

again led with a score of 72.51%, although here, the performance differences among the newer 11 

models were relatively narrower. In contrast, models like ChatGPT-3.5 Turbo and Qianwen-14B 12 

-Base showed relatively lower scores, 56.25% and 42.86%, respectively. The Composite Medical 13 

Content (CMC) dataset, which assesses the models' understanding of medical knowledge 14 

specifically in the Chinese context, saw MediGuide-14B performing the best with a score of 15 

77.56%. ChatGPT-4 and Lingyi Zhihui also showed strong results with scores above 73%. 16 

Performance on the Medical Chinese Medical Licensing Examination (MCMLE) again 17 

highlighted the effectiveness of ChatGPT-4 and MediGuide-14B, which scored 74.58% and 18 

75.41%, respectively, demonstrating their robustness in handling questions related to the Chinese 19 

Medical Licensing Examination. Lower-tier models, such as LLaMA 2-13B, had notably weaker 20 

performance, indicating possible challenges in their language-specific medical knowledge. Lastly, 21 

in the Cardiovascular Disease Intelligence Diagnostic Benchmark (CVIDB), MediGuide-14B 22 
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exhibited exceptional capability, scoring the highest at 80.85%, showing its potential utility in 1 

applications focused on cardiovascular health. ChatGPT-4 remained consistent across all 2 

benchmarks with scores generally above 75%, reinforcing its overall reliability in medical domain 3 

question answering. (Supplementary Table S4). 4 

MediGuide-14B underwent a thorough evaluation process like that of 'Tongyi Qianwen' and 5 

'Lingyi Zhihui.' It was tested using 1000 test units, each consisting of 100 distinct real-world cases 6 

sourced from actual medical scenarios. This rigorous testing framework provided a comprehensive 7 

assessment of MediGuide-14B's performance in real-life conditions. The model achieved an 8 

impressive accuracy rate of 84.52%. It demonstrated high sensitivity in correctly identifying 9 

positive results and commendable specificity in correctly identifying negative results 10 

(Supplementary Figure S4). 11 

Extended recommendations by LLMs 12 

For the reference standards, we invited a panel of four distinguished cardiovascular specialists, 13 

each with over twenty years of clinical experience. To further evaluate the possibility of LLM's 14 

role in emergency Chest Pain Triage, we asked them to arbitrarily evaluate the treatment 15 

recommendations generated from the prompts. The evaluation was based on established guidelines 16 

for diagnosing and treating chest pain and full access to an array of essential patient data: from 17 

electrocardiograms (ECGs) and cardiac enzyme tests to echocardiograms, NT-proBNP evaluations, 18 

and when indicated, results from coronary angiography.  19 

As illustrated in Supplementary Figure S5, 3.32% (95% CI:3.22%-3.41%) of the 20 

recommendations generated by "Tongyi Qianwen" were deemed unsuitable. This resulted in 21 

significant omissions of critical content that could potentially endanger patients. However, 12.88% 22 
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(95% CI:12.71%-13.04%) of the recommendations were considered reasonable, albeit incomplete, 1 

with no direct harm to patients. The remaining 83.81% (95% CI:83.64%-83.98%) of 2 

recommendations were classified as comprehensive and appropriate.  3 

Regarding the "Lingyi Zhihui" model, 3.40% (95% CI:3.30%-3.50%) of recommendations were 4 

deemed inappropriate with inherent risks. 43.44% (95% CI:43.18%-43.69%) were considered 5 

reasonable but not exhaustive, devoid of direct patient harm. Meanwhile, 53.16% (95% 6 

CI:52.91%-53.41%) of recommendations were thoroughly comprehensive and relevant.  7 

The diagnostic suggestions from human experts were deemed that 2.48% (95% CI:0.28%-4.68%) 8 

were inappropriate and could potentially compromise timely patient treatment. Another 12.96% 9 

(95% CI:7.69%-18.23%) were considered reasonable but not comprehensive, while a substantial 10 

84.56% (95% CI:74.45%-94.67%) were acknowledged as fully comprehensive and appropriate.  11 

The performance assessment of the MediGuide-14B group in terms of treatment recommendations 12 

reveals a nuanced picture. A small fraction, specifically 2.90% (95% CI:1.86%-3.94%), of the 13 

recommendations were categorized as unreasonable and risky, highlighting areas where caution is 14 

necessary. On the other hand, 13.52% (95% CI:11.38%-15.64%) of the recommendations were 15 

deemed reasonable, albeit incomplete, suggesting a foundation of sound medical guidance that 16 

could benefit from further elaboration or additional information. The majority, 83.58% (95% 17 

CI:81.28%-85.98%) of the recommendations from the MediGuide-14B group stood out as both 18 

reasonable and comprehensive, indicating a high level of proficiency in providing well-rounded 19 

and thorough treatment advice. (Supplementary Figure S5) 20 

The impact of employment status of patients on the ACS Diagnostic Accuracy of LLMs  21 
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Next, we sought to evaluate the impact of employment status of patients on LLM diagnostic 1 

accuracy. We hypothesized that employment status may be linked to inherent characteristics that 2 

could influence the information extracted from a patient's chief complaint. Given that individuals 3 

covered by the Urban and Rural Resident Basic Medical Insurance (URRBMI) are typically 4 

unemployed or self-employed, while those covered by the Urban Employee Basic Medical 5 

Insurance (UEBMI) are typically employed by institutions, we leveraged health insurance data 6 

extracted from medical records to infer the employment status of patients64,65. In the case of 7 

patients under the URRBMI insurance plan, "Tongyi Qianwen" exhibited a diagnostic accuracy of 8 

58.56%, while it demonstrated a slightly higher accuracy of 60.74% among patients under the 9 

UEBMI plan (P<0.05). Interestingly, the diagnostic accuracy of "Lingyi Zhihui" was also affected 10 

by the employment status of the patients: an accuracy rate of 77.62% under URRBMI and 74.75% 11 

under UEBMI (P<0.05). 12 

In the evaluation of MediGuide-14B's performance across different insurance types, the group 13 

demonstrated notable results in the realm of Supplementary Diagnosis accuracy. For cases covered 14 

under the URRBMI, the MediGuide-14B achieved a mean accuracy of 83.65%, under the UEBMI 15 

category, the mean accuracy recorded was slightly higher, at 85.04% (P=0.046). (Supplementary 16 

Figure S6)  17 

The impact of patient’s history on LLMs diagnosis efficacy  18 

Medical history is crucial in diagnosis, offering insights into a patient's past health and disease risk 19 

factors. While human doctors can interpret this data based on experience, LLMs face a challenge 20 

in doing so effectively. We sought to analyze how medical history affects LLMs’ diagnosis 21 

performance.  22 



27 

 

In the absence of medical history, "Tongyi Qianwen" initially demonstrated a mean accuracy of 1 

72.66% (95% CI: 72.43%-72.90%), a sensitivity of 81.65% (95% CI: 81.25%-82.06%), and a 2 

specificity of 68.81% (95% CI: 68.53%-69.09%). Upon the inclusion of past medical histories, the 3 

accuracy decreased to 61.110% (95% CI: 60.84%-61.29%). However, sensitivity increased to 4 

91.67% (95% CI: 91.37%-91.96%), while specificity decreased to 47.95% (95% CI: 5 

47.65%-48.25%). Additional details can be found in Figure 3. In the case of "Lingyi Zhihui," 6 

without medical history, the diagnostic accuracy was 74.17% (95% CI: 73.94%-74.39%), 7 

sensitivity stood at 89.06% (95% CI: 88.73%-89.40%), and specificity at 67.78% (95% CI: 8 

67.49%-68.07%) as depicted in Figure 3. Subsequently, with the incorporation of a more 9 

comprehensive dataset, "Lingyi Zhihui" achieved an accuracy of 76.40% (95% CI: 10 

76.17%-76.63%), sensitivity of 90.99% (95% CI: 90.68%-91.31%), and specificity of 70.15% (95% 11 

CI: 69.85%-70.44%). 12 

Regarding the "Tongyi Qianwen" model, the initial treatment suggestions in the absence of 13 

medical history were deemed inappropriate and potentially harmful in 5.80% of instances (95% CI: 14 

5.68%-5.93%). Approximately 51.33% (95% CI: 51.11%-51.55%) were considered reasonable but 15 

incomplete, while 42.87% (95% CI: 42.64%-43.09%) were assessed as both comprehensive and 16 

suitable. In subsequent recommendations when medical history was provided, the figures shifted 17 

to 3.32% (95% CI: 3.22%-3.41%) being inappropriate, 12.88% (95% CI: 12.71%-13.04%) being 18 

reasonable but partial, and 83.81% (95% CI: 83.64%-83.98%) being thorough and appropriate 19 

(Fig. 3). For the "Lingyi Zhihui" model, the recommendations based on prompts without medical 20 

history were categorized as inappropriate in 6.50% (95% CI: 6.37%-6.63%) cases, reasonable but 21 

lacking in 28.45% (95% CI: 28.21%-28.69%), and both comprehensive and fitting in 65.05% (95% 22 
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CI: 64.80%-65.31%). When medical history was provided, "Lingyi Zhihui" recommendations 1 

shifted to 3.40% (95% CI: 3.30%-3.50%) being inappropriate, 43.44% (95% CI: 43.19%-43.68%) 2 

being reasonable but not exhaustive, and 53.16% (95% CI: 52.91%-53.41%) being comprehensive 3 

and relevant. (Figure 3) 4 

The removal of past medical history significantly impacted "Tongyi Qianwen," notably increasing 5 

specificity by 20.86% and accuracy by 11.55%, while sensitivity declined by 10.02%. Conversely, 6 

"Lingyi Zhihui" exhibited relatively minor changes, with specificity decreasing by 2.37%, 7 

accuracy by 2.23%, and sensitivity by 1.93% (Supplementary Figure S7). Following the omission 8 

of medical history, "Tongyi Qianwen" reduced the rate of inappropriate treatment 9 

recommendations from 5.80% to 3.32%, while comprehensive and appropriate recommendations 10 

surged from 42.87% to 83.81%. In contrast, "Lingyi Zhihui" saw a decline in inappropriate 11 

recommendations from 6.50% to 3.40%, but comprehensive and appropriate recommendations 12 

decreased from 65.05% to 53.16%. This indicates that both models decreased the frequency of 13 

inappropriate recommendations when excluding medical history, with "Tongyi Qianwen" notably 14 

enhancing comprehensive and appropriate suggestions while "Lingyi Zhihui" experienced a 15 

decline. 16 

In assessing the impact of removing past medical history on MediGuide-14B's model metrics, a 17 

series of changes were observed. The accuracy of the model experienced a decrease of 2.90%. 18 

Additionally, there was a 4.26% reduction in sensitivity, indicating a diminished capacity of the 19 

model to correctly identify positive cases. Finally, the model's specificity also decreased by 1.58%, 20 

reflecting a slight reduction in its ability to accurately identify negative cases. (Supplementary 21 

Figure S7) 22 
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Discussion  1 

As large language models (LLMs) continue to advance and find widespread application, they have 2 

demonstrated transformative potential in medical tasks. However, evaluating the capabilities of 3 

large language models is a complex and challenging scientific issue. Currently, the assessment of 4 

these models' medical knowledge and logical reasoning abilities primarily relies on standardized 5 

tests. Yet, real-world medical tasks often exceed the scope of structured tasks, presenting a high 6 

level of complexity and uncertainty. There is a global lack of systematic evaluation of large 7 

language models' effectiveness in actual medical settings. Moreover, the pre-training data for the 8 

world’s major language models is predominantly in English. For instance, the recently released 9 

Llama3 has about 5% of its corpus in non-English languages; ChatGPT-3.5 has approximately 10 

0.09905% of its pre-training data in Chinese. Even models intended primarily for Chinese 11 

contexts, such as Tongyi Qianwen, Wenxin Yiyen, and Baichuan, have only 15-30% of their 12 

datasets in Chinese. Considering the structural, grammatical, and usage differences between 13 

non-segmented and segmented texts, the composition of different language families in LLMs' 14 

pre-training datasets might affect their performance in various linguistic environments, which is a 15 

scientific question worthy of in-depth discussion. 16 

This study aims to fill these gaps, focusing on the specific applications of large language models 17 

in emergency triage or consultation scenarios. This study compares the diagnostic performance of 18 

AI-driven models and human expertise in triaging emergency chest pain cases. While previous 19 

research has primarily focused on English-based ChatGPT models, this study is pioneering in 20 

evaluating two LLMs designed for "non-segmented text" environments. 21 

Traditional machine learning systems (MLS) use specific structured data from the Electronic 22 
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Emergency Triage System (EETS) to enhance the identification of critically ill patients. These 1 

MLS employ a predictive model primarily using the CatBoost Python package and provide 2 

real-time explanations via the SHAP method to help medical staff understand why certain patients 3 

may require immediate treatment. However, these systems have limitations, such as potential 4 

overfitting issues, a lack of effective capture of complex nonlinear relationships, and challenges in 5 

processing unstructured data. While models built on traditional machine learning or deep learning 6 

perform well on specific datasets, they generally lack generalizability and often show reduced 7 

predictive power when patient populations and samples are changed. This is why currently, there 8 

are no truly integrated predictive models in medical systems worldwide, and a significant gap 9 

exists between academic research on predictive models and their clinical applications25. Models 10 

like GPT-4 and similar large language models, with their strong capabilities in understanding and 11 

generating natural language, logical reasoning, and knowledge storage, show significant 12 

advantages in handling various data types, including unstructured, multimodal, and dynamic data.  13 

It's worth noting that "Tongyi Qianwen (LLM)" and "Lingyi Zhihui (LLM)" exhibited high 14 

sensitivity but lower specificity, particularly when compared to human experts. This raises 15 

concerns about potential overdiagnosis by the AI models, which could result in unnecessary tests 16 

and treatments. However, high sensitivity is crucial for screening tools, as they aim to capture 17 

most of the true cases, even if it leads to some false positives. The high sensitivity of the AI 18 

models suggests their suitability as initial diagnostic tools to ensure potential positive cases are not 19 

missed. While both LLMs demonstrated the ability to provide relevant medical advice, there were 20 

notable differences in the depth and validity of their recommendations. This underscores the need 21 

to optimize LLMs for medical scenarios before deployment in healthcare settings. It is essential to 22 
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utilize more realistic medical data during training and fine-tune the models to align with the 1 

nuances of medical treatment itself 66,67. 2 

This study found that LLMs struggled to significantly improve diagnostic accuracy and treatment 3 

recommendations when incorporating patients' medical histories. This could be attributed to two 4 

key factors: Current LLMs rely on computational power and probabilistic calculations rather than 5 

a deep understanding of disease mechanisms. Second, there's a need for more advanced algorithms 6 

that can better extract relevant clinical information while filtering out noise from historical data. 7 

The removal of past medical history significantly impacted "Tongyi Qianwen," leading to a 8 

substantial increase in specificity and accuracy while decreasing sensitivity. Meanwhile, "Lingyi 9 

Zhihui" exhibited minor changes in diagnostic metrics. Additionally, both models altered the 10 

frequency of inappropriate treatment recommendations when medical history was omitted, with 11 

"Tongyi Qianwen" improving its comprehensive and appropriate suggestions, while "Lingyi 12 

Zhihui" declined. When utilizing LLMs for diagnostic support, healthcare practitioners should 13 

acknowledge variations in how these models handle intricate and diverse data68. Factors such as 14 

model comprehensiveness, accuracy, and potential sources of interference should be considered. 15 

Clinical judgment, rooted in experience, should guide decision-making. Continuous monitoring 16 

and performance optimization are crucial. LLMs offer promise as diagnostic aids, but healthcare 17 

professionals must weigh multiple factors to ensure the delivery of precise and thorough 18 

diagnostic recommendations to patients. 19 

Our study shifted focus to MediGuide-14B, our proprietary open-source model. This model has 20 

been specifically fine-tuned for medical applications, providing us with an opportunity to 21 

scrutinize its real-world efficacy. In our preceding analyses, we observed notable variations in 22 
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sensitivity and specificity across different LLMs, underscoring the need for a detailed examination 1 

of each model's strengths and weaknesses. MediGuide-14B stands out as a large language model 2 

dedicated to the medical sector, boasting an advanced integration of domain-specific datasets and 3 

bespoke training approaches to optimize its diagnostic capabilities.   4 

Conducting an exhaustive evaluation of MediGuide-14B's performance is pivotal not only for 5 

gauging the broader applicability of LLMs in healthcare but also for charting the course for their 6 

future development and potential areas of application. By juxtaposing MediGuide-14B against 7 

other leading models in the field, we aim to deliver a nuanced appraisal of the model's accuracy, 8 

efficiency, and reliability in medical diagnostics. This comparative analysis is intended to furnish 9 

diverse insights and formative experiences, contributing significantly to the ongoing discourse on 10 

the role and impact of large language models in healthcare research.  11 

Our study illustrates the marked variability in the performance of different large language models 12 

when processing real-world medical scenario information. The objective of our research is not 13 

solely to compare and rank these models but to emphasize the adaptability and potential of LLMs 14 

in the medical field. This realization underscores the necessity of careful and precise 15 

benchmarking tailored for medical AI applications. We have also discovered that specific 16 

fine-tuning and alignment of LLMs significantly enhance their ability to perform specialized tasks 17 

within the medical domain, even on smaller-scale models. This finding is particularly significant 18 

for vertical sectors like healthcare, as it suggests the feasibility of training and deploying efficient 19 

medical LLMs at a lower cost. Such advancements allow us to apply cutting-edge AI technology 20 

more effectively in clinical settings, thereby improving the quality and efficiency of healthcare 21 

services. 22 
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LLMs have the potential to reshape certain aspects of healthcare, particularly in the context of 1 

rapid pre-hospital Chest Pain Triage. The integration of these models has the potential to 2 

streamline triage procedures, facilitating timely interventions even before a patient arrives at the 3 

hospital. This not only enhances the effectiveness and scope of diagnostic and therapeutic 4 

interventions but also promises to improve the efficiency of medical infrastructure, reduce patient 5 

waiting times, alleviate the burden on emergency medical personnel, and ultimately alleviate the 6 

financial strain on patients and healthcare systems69-71. In conclusion, the diagnostic capabilities 7 

demonstrated by LLMs, as evidenced in this study, underscore their significance in advancing the 8 

field of rapid triage. It is reasonable to anticipate that soon, these models will play a pivotal role in 9 

enhancing healthcare delivery, ultimately benefiting both patients and healthcare systems. 10 

In an era increasingly dominated by AI, medical practitioners, particularly the younger generation, 11 

will inevitably encounter an expanding array of medical AI entities. How they utilize AI, discern 12 

which AI tools best assist them, and identify the specific functions where AI can provide support, 13 

necessitates robust benchmarking efforts. Such benchmarks offer crucial guidance to healthcare 14 

professionals in navigating the AI landscape. Our study aims to initiate this journey in the field, 15 

laying a foundational step that we believe will serve as a vital reference for future researchers. 16 

This work is poised to propel the further advancement and application of LLMs in healthcare, 17 

ultimately aiding medical professionals in harnessing AI's full potential for improved patient care 18 

and healthcare delivery. 19 

Limitations  20 

The reliance on retrospective data may introduce inherent biases, potentially impacting the 21 

generalizability of the results. Additionally, LLMs' diagnostic performance in ACS triaging 22 
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scenarios might not reflect their capabilities in other medical conditions. The specificity 1 

challenges highlighted in the study emphasize the need for broader and more diverse training 2 

datasets. Furthermore, the comparative analysis between AI models and human experts, though 3 

illuminating, is based on a restricted set of parameters, potentially overlooking nuanced aspects of 4 

clinical decision-making. The study underscores the necessity of comprehensive, prospective 5 

research to validate the findings and address these limitations. 6 

Declarations: 7 

This manuscript was edited by LLM “Tongyi Qianwen” for its English language, but human 8 

authors read and made the final version.   9 
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Table 1: Comparison of accuracy, sensitivity, and specificity in diagnosing emergency ACS between the two large language model diagnostic groups and the 

human expert diagnostic group. 

Model/Groupe Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) 

TongyiQianwen（v1.0.3） 61.11% (95% CI:60.84%-61.29%) 91.67% (95%CI:91.37%-91.96%) 47.95% (95%CI:47.65%-48.25%) 

Lingyi Zhihui（v2.2.0） 76.40% (95% CI:76.17%-76.63%) 90.99% (95%CI:90.67%-91.31%) 70.15% (95%CI:69.85%-70.44%) 

Human Experts 86.37% (95%CI:86.18%-86.55%) 79.62% (95%CI:79.20%-80.04%) 89.26% (95%C:89.06%-89.46%) 

This table provides a detailed comparison of the key performance metrics when diagnosing emergency ACS among the two large language model diagnostic groups 

and the human expert diagnostic group. 

 



Fig. 1: Research process diagram accompanied by a comparative illustration of 

diagnosis time between LLMs and human experts, along with a comparison of the 

diagnostic thought processes of LLMs and humans. 

 
The research process diagram displays the primary steps and methodologies of this study. The 

comparative illustration showcases the time disparities between LLMs and human experts in 

completing diagnostic tasks. The thought process comparison further elucidates the cognitive and 

decision-making pathways employed by both during diagnosis. 


