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Abstract 
Psychiatric disorders like schizophrenia, bipolar disorder, and major depressive disorder 
exhibit significant genetic and clinical overlap. However, their molecular architecture remains 
elusive due to their polygenic nature and complex brain cell interactions. Here, we integrated 
clinical data with genetic susceptibility to investigate gene expression and chromatin 
accessibility in the orbitofrontal cortex of 92 postmortem human brain samples at the single-
cell level. Through single-nucleus (sn) RNA-seq and snATAC-seq, we analyzed approximately 
800,000 and 400,000 nuclei, respectively. We observed cell type-specific dysregulation related 
to clinical diagnosis and genetic risk across cortical cell types. Dysregulation in gene 
expression and chromatin accessibility associated with diagnosis was pronounced in excitatory 
neurons. Conversely, genetic risk predominantly impacted glial and endothelial cells. Notably, 
INO80E and HCN2 genes exhibited dysregulation in excitatory neurons superficial layers 2/3 
influenced by schizophrenia polygenic risk. This study unveils the complex genetic and 
epigenetic landscape of psychiatric disorders, emphasizing the importance of cell type-specific 
analyses in understanding their pathogenesis and contrasting genetic predisposition with 
clinical diagnosis.   
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1. Introduction 
Psychiatric disorders, including major depressive disorder (MDD), bipolar disorder and 
schizophrenia, have a strong impact on an individual’s quality of life, pose a substantial 
economic burden, and their most devastating outcome is suicide1,2. These disorders not only 
display overlapping symptoms3, but also share a common genetic architecture4,5. Genetic 
correlation analyses have unveiled distinct interconnected clusters among these disorders, 
indicating their interconnected nature and underscoring the genetic overlap between mood and 
psychotic disorders5. This shared genetic architecture has been the focus of extensive research6–

10. 
Genome-wide association studies (GWAS) have significantly advanced our understanding of 
the genetic architecture of psychiatric disorders, uncovering numerous significant genetic 
variants5,11–13. Polygenic risk scores (PRS) have emerged as a pivotal tool for capturing the 
cumulative genetic risk for a particular trait14, emphasizing the multi-genic nature of the 
etiology of psychiatric disorders. The application of PRS has facilitated a deeper understanding 
of the relationship between genetic risk and various genomic layers15, such as gene expression 
and chromatin accessibility, to understand the full spectrum of psychiatric disorders. 
In this context, the role of gene expression studies is particularly relevant. Although previous 
research has identified numerous genes associated with disorders such as schizophrenia, the 
direction of effects and overlap with GWAS findings often vary, indicating a complex 
relationship between gene expression changes and genetic susceptibility16,17. Transcriptome-
wide association studies (TWAS), expression quantitative trait loci (eQTL) and eQTScore 
(association analyses between PRS and gene expression) analyses have further bridged the gap 
between GWAS findings and gene expression data9,16,18,19. These integrative approaches 
provide insights into how the identified GWAS variants can influence gene expression, thereby 
contributing to the pathophysiology and a more nuanced understanding of psychiatric 
disorders20. 
Given that most GWAS variants associated with psychiatric disorders are located in non-
coding regulatory elements5,21, there is an increased focus on epigenetic studies, which can 
provide context regarding the intricate relationship between genetics, gene regulation and 
environmental factors. In this regard Bryois et al. investigated the link between schizophrenia 
and chromatin accessibility in the prefrontal cortex, identifying their ATAC-seq data as 
strongly associated with common GWAS variants for schizophrenia21. Additionally, Hauberg 
et al. observed considerable variability in chromatin accessibility across cell types in different 
cortical regions, revealing that such diversity may obscure cell type-specific effects in 
aggregate studies, thereby underscoring the intricate complexities of epigenetic regulation22. 
The etiology of psychiatric disorders is notably complex, involving diverse molecular, cellular, 
and structural alterations across various regions of the human brain, such as the prefrontal 
cortex, which plays a crucial role in higher cognitive functions and has been linked to various 
psychiatric conditions9,11–13,16,23–26. Structural and functional abnormalities in areas like the 
orbitofrontal cortex (OFC), a key component of the ventral prefrontal cortex, have been widely 
reported in many psychiatric disorders27. Brodmann area 11, a subregion of the OFC, has 
shown reduced grey matter volume in schizophrenia patients28 and dysregulation of gene 
expression and DNA methylation in depressed and suicidal patients29. 
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The emergence of single-cell sequencing technologies in recent years has revolutionized our 
ability to conduct high-resolution studies of various tissues at the level of individual cell 
types30,31. These technologies have enabled the creation of single-cell transcriptomic and 
epigenomic atlases of the human brain, uncovering hundreds of distinct cell types and even 
thousands of cellular subtypes within millions of cells across different brain regions32,33. Such 
advancements have greatly enhanced our understanding of the cellular specificity of psychiatric 
disorders, moving from bulk analyses to the more granular single-cell resolution26,34–36. 
Our study aims to explore the molecular landscape of the orbitofrontal cortex in psychiatric 
disorders, using postmortem samples from patients and controls. By examining differential 
gene expression and chromatin accessibility at the level of single cells, we uncovered key 
pathways and functions altered across various cortical cell types and how these changes relate 
to both genetic predisposition and clinical diagnosis. These findings provide new insights into 
the molecular underpinnings of psychiatric disorders in specific cortical cell types, illustrating 
how genetic risk factors translate into clinical symptoms and may inform more targeted 
diagnostics and therapeutic strategies.  
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2. Results 
2.1. Single-nucleus multi-omic profiling identifies distinct cell types 

in the human orbitofrontal cortex 
To unravel cell type-specific molecular alterations in psychiatric disorders within the 
orbitofrontal cortex (OFC), we analyzed postmortem brain samples (Brodmann Area 11) using 
single-nucleus (sn) RNA-seq and ATAC-seq, complemented by genotype information, 
demographic and clinical variables (Figure 1a). Our cohort was composed of 92 donors, 
including 35 controls and 57 cases (nschizophrenia=38, nschizoaffective=7, nMDD=7, nbipolar=5). Case 
and control groups were matched for sex, age, postmortem interval and brain pH, see Table S1.  
Following stringent quality control measures, we obtained high-quality transcriptomic data 
from 787,046 nuclei, averaging 9,046 nuclei per donor (range 3,895-15,693, Table S2). Each 
nucleus had a median of 3,887 UMIs, detecting a median of 2,205 genes. Additionally, 
chromatin accessibility data were acquired for 399,439 nuclei, averaging 4,438 nuclei per 
donor (range 982-8,707, Table S2) with a median of 7,071 ATAC-seq fragments per nucleus. 
SnRNA-seq and snATAC-seq data enabled the comprehensive profiling of all major cortical 
cell types, including excitatory and inhibitory neurons across different cortical layers, 
endothelial cells, and glial subtypes, like astrocytes, microglia, oligodendrocytes, and 
oligodendrocyte precursor cells (OPCs). We successfully identified 19 distinct cell types in 
snRNAs-seq data, with 15 of these also present in the snATAC-seq data (Figure 1b-e). This 
identification aligns well with the expected diversity of cell types in the human brain and 
demonstrates the robustness of our method. While the number of nuclei per cell type exhibited 
heterogeneity, both among different cell types and between snRNA-seq and snATAC-seq 
datasets (Figure 1e), a high median Pearson correlation coefficient of 0.86 was observed 
between the cell type proportions of RNA-seq and ATAC-seq data across donors (Supp. Figure 
1a). Cell type proportions differed significantly (FDR ≤ 0.05) between the RNA-seq and 
ATAC-seq modalities for all cell types (Figure 1f, Table S3). Conversely and in agreement 
with previous research findings26, no significant difference in cell type proportions between 
cases and controls within each data modality were observed (Supp. Figure 1b-c). 

2.2. Cell type-specific alterations in psychiatric disorders: distinct 
patterns in differential gene expression and chromatin 
accessibility 

As there were no significant differences in cell type proportions between cases and controls 
within each data modality, we moved our focus on more detailed molecular analyses. To 
investigate transcriptional alterations associated with psychiatric disorders, we conducted 
differential expression analyses, contrasting cases (n=57) and controls (n=35) within each cell 
type (n=19). The extent of significantly differentially expressed (DE, FDR ≤ 0.1) genes varied 
greatly across cell types, ranging from 0 to 481 (Figure 2a, Table S5). Notably, a high 
abundance of DE genes was observed within multiple subtypes of excitatory neurons, which 
also exhibited the most pronounced log2-transformed fold changes (FC=[-0.35,0.38], see 
Figure 2b). More than 50% of DE hits were uniquely dysregulated in one cell type only (Figure 
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2a), highlighting the distinct transcriptional signatures across cell types. However, the cell 
types displaying the greatest number of DE genes also possess the highest nuclei count and the 
largest number of genes evaluated for DE, suggesting a proportional relationship between these 
variables (see Supp. Figure 3b-c, Supp. Information). 
Notably, Slit Guidance Ligand 2 (SLIT2) on chromosome 4 and Potassium Voltage-Gated 
Channel Subfamily Q Member 3 (KCNQ3) on chromosome 8 demonstrated unique regulatory 
patterns (Figure 2c-h). SLIT2 displayed the highest upregulation (FC=0.38, lowest 
FDR=1.38x10-6) in excitatory neurons of layers 4 to 6, cluster 1 (Exc_L4-6_1, Figure 2c-d), 
despite not exhibiting the highest expression in this cell type (mean exp=0.32, compared to 
1.66 in basket cells [In_PVALB_Ba], Figure 2e). While SLIT2 is known for its role in axon 
guidance and has been implicated in depression and anxiety behaviors in mice72, its specific 
dysregulation in the human cortex is novel. KCNQ3 was uniquely downregulated in microglia 
(FC=-0.25, FDR=0.02), a contrast to its FCs in other cell types (FCs>-0.05, Figure 2f-g). 
Exhibiting the highest expression in microglia (mean exp=1.75, Figure 2h) and previously 
linked to bipolar disorder73, the specific downregulation of KCNQ3 in microglia offers new 
insights into the cellular mechanisms that might contribute to the pathophysiology of this 
disorder, particularly in the context of neuroinflammation and microglial function. 
To evaluate how our results align with previous studies, we correlated our effect sizes with 
those reported in a single-cell RNA-seq study of schizophrenia in the prefrontal cortex by 
Ruzicka et al.26, see Methods. Among the various correlations observed between the effect 
sizes of the two studies, those between corresponding cell types were notably the highest. For 
instance, astrocytes in our dataset exhibited the strongest correlation with those of the 
corresponding astrocyte population in Ruzicka et al. (Supp. Figure 3d), indicating a broad 
consistency with previous findings. 
From the DE genes we identified within individual cell types (n=872), only 44% (n=387) 
exhibited a significant difference in gene expression on the full pseudobulk level, which is the 
aggregated signal of all cell types. Out of all DE genes identified from the full pseudobulk data 
(n=511), 57% (n=291) were significant in at least one individual cell type (Supp. Figure 3e-f), 
which highlights the importance of studying the single-cell level. 
To complement findings from our DE analysis, we examined variations in chromatin 
accessibility between cases and controls across shared 15 cell types. Our focus was on 
differences in gene scores, a quantitative measure of gene activity influenced by accessible 
chromatin. Only a small number of significant accessibility alterations (DA, FDR ≤ 0.1) were 
found in two clusters of excitatory neurons (excitatory neurons layers 2/3 [Exc_L2-3], n=45 
and excitatory neurons layers 3 to 5 [Exc_L3-5], n=1) and in astrocytes (fibrous [Astro_FB], 
n=5 and protoplasmic [Astro_PP], n=4), see Figure 3a and Table S6. Only 5 of the DA genes 
overlapped with DE genes previously identified in the same cell type. When restricting the DA 
analysis to DE genes within the respective cell type, we found a subset also demonstrating 
significant alterations in chromatin accessibility. The maximum number of DE/DA genes were 
13 in excitatory neurons in superficial layers 2/3 (Figure 3b, Table S7). Notably, discrepancies 
in regulation direction between transcriptomic and epigenomic data were noted in 8% of 
DE/DA genes (2 out of 24 genes, Supp. Figure 4a). Among the 22 genes with congruent 
regulatory patterns in both datasets, Family BHLH Transcription Factor 4 (HES4) in excitatory 
neuron layers 4 to 6, cluster 1 (Exc_L4-6_1), and Insulin-like growth factor-binding protein 5 
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(IGFBP5) in oligodendrocyte precursor cells (OPCs) exhibit the most pronounced fold changes 
(Figure 3c-d), but also SLIT2 in excitatory neurons layers 4 to 6, cluster 1 (Exc_L4-6_1) is a 
DE/DA gene. These findings, including the discrepancies, imply a complex regulatory 
landscape, and suggest that additional regulatory mechanisms may influence the gene 
expression. 

2.3. Differential transcriptomic and epigenomic patterns in high vs. 
low genetic risk donors highlight chromatin accessibility 
variations 

To disentangle the influence of genetic predisposition on gene expression and chromatin 
accessibility, we utilized polygenic risk scores (PRS) from psychiatric GWAS studies, 
including cross-disorder phenotype5, schizophrenia74, MDD12 and bipolar disorder13, and 
height60 as a non-psychiatric trait (Table S4). Focusing on the extreme PRS groups, matched 
for confounding variables (see Methods, Supp. Figure 5+6), we found significant DE risk genes 
in 3 to 10 out of the 19 cell types for each GWAS trait (Figure 4b, Supp. Figure 7a, Table S8). 
54 DE risk genes were found in the fibrous astrocytes (Astro_FB) for the cross-disorder 
phenotype and scattered hits across other cell types (n=18 hits in 5 cell types). Bipolar disorder 
DE risk genes were detected primarily in excitatory neurons (n=32 out of 35 hits) overlapping 
partially with the DE genes between cases and controls (n=3 out of 35 hits, Figure 4b, gray 
dots). Genetic risk for schizophrenia was associated with changes in multiple cell types (n=17 
hits in 7 cell types), while fewer MDD risk genes emerged as significant (n=7 hits in 3 cell 
types). DE risk genes exhibited larger effect sizes than DE genes for clinical diagnoses (median 
absolute FCPRS=[0.29,0.55] vs. median absolute FCdiagnosis=[0.18,0.30] per cell type, see Supp. 
Figure 9a). Notably, three DE risk genes were identified across three different cell types for 
height which are distinct from the DE risk genes for the psychiatric phenotypes. 
When investigating DA between extreme PRS groups (DA risk genes), we identified 6,418 DA 
risk genes across cell types and phenotypes (Figure 4c, Supp. Figure 8a, Table S9), contrasting 
with 141 DE risk genes. These genes were primarily enriched in excitatory neurons layers 2/3 
(Exc_L2-3, n=5,645 DA risk genes). Also DA risk genes exhibited larger effect sizes than DA 
genes for clinical diagnoses (median absolute FCPRS=[0.15,0.74] vs. median absolute 
FCdiagnosis=[0.12,0.35] per cell type, see Supp. Figure 9b). Notably, despite identifying DA risk 
genes for height, only one overlapped with bipolar disorder DA risk genes. The overlap 
between DA and DE risk genes was minimal with only two genes (Figure 4c, gray dots), 
hyperpolarization-activated cyclic nucleotide-channel (HCN2) and IN080 complex subunit E 
(INO80E), being both DE (FCs=0.36 and 0.26, FDR=0.06 and 0.09 respectively) and DA 
(FCs=0.14 and 0.16, FDR=0.05 and 0.03 respectively) for schizophrenia risk in excitatory 
neurons layers 2/3 (Exc_L2-3). Genomic tracks surrounding HCN2 and INO80E illustrate 
different ATAC coverage for the high and low schizophrenia risk groups (Figure 4d-e). In bulk 
GTEX data, HCN2 is mostly expressed in the heart and the nervous system75 (Supp. Figure 8f) 
and contributes to pacemaker currents76, while INO80E is expressed across all tissues75 (Supp. 
Figure 8f). INO80E is involved in ATP-dependent chromatin remodeling, DNA replication and 
repair77. 
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In the analysis of the overlap between diagnosis-related genes and genetic risk genes, our 
findings revealed a distinct cellular specificity. The molecular response in neurons was 
influenced by both diagnosis-related genes (DE or DA genes) and genes associated with genetic 
risk (DE or DA risk genes). In contrast, glial cells predominantly exhibited molecular 
alterations linked to genetic risk factors. Specifically, 81% of gene alterations in OPCs, 76% 
in microglia, and over 90% in both fibrous (Astro_FB) and protoplasmic astrocytes (Astro_PP) 
were linked to genetic risk rather than disease status. Endothelial cells were also primarily 
influenced by genetics, with 95% of changes tied to genetic risk (Supp. Figure 10). 

2.4. Disease-relevant pathway enrichment in microglia is uncovered 
by transcriptomic profiling 

To explore the biological processes and functions affected by genes differentially regulated due 
to diagnosis or genetic predisposition within different cell types, we conducted KEGG pathway 
enrichments for each cell type in the 250 most up- and downregulated DE and DA genes and 
DE and DA risk genes (see Methods). For the top DE genes between cases and controls, 
downregulated genes in microglia were distinctively enriched for pathways like long-term 
depression (FDR=0.04) and cell-cell interaction mechanisms, such as focal adhesion 
(FDR=0.04), setting them apart from other cell types (Figure 5). Furthermore, top DE genes 
highlighted distinct pathways in the nervous and endocrine systems (e.g. various synapses or 
endocannabinoid signaling) enriched for downregulated genes in fibrous astrocytes 
(Astro_FB), chandelier cells (In_PVALB_Ch), and microglia. Pathways related to 
neurodegenerative diseases and oxidative phosphorylation showed significant enrichment in 
both up- and downregulated genes in different cell types. Notably, the Ribosome pathway 
exhibited significant enrichment, particularly in upregulated genes especially in 
oligodendrocytes (FDR=5.18x10-29), alongside moderate upregulation observed in OPCs 
(FDR=7.20x10-7) and endothelial cells (FDR=6.54x10-11). Many pathways enriched in up- and 
downregulated DE risk genes reflecting genetic risk (Supp. Figure 7c-f) overlap with the 
pathways enriched in genes altered between cases and controls, while the respective cell types 
exhibiting the enrichment are often different. For chromatin accessibility alteration between 
cases and controls, pathway enrichment analysis revealed no significant enrichments for most 
cell types (Supp. Figure 4b) and for extreme genetic risk groups it revealed only few significant 
pathways (Supp. Figure 8b-e) which can be attributed to the DA genes’ involvement in separate 
biological processes rather than shared pathways, and different sizes of background sets. 

2.5. Schizophrenia polygenic risk influences INO80E and HCN2 
regulation in excitatory neurons in superficial layers 2/3, 
independent of diagnosis 

The gene INO80E, previously linked to schizophrenia through genomic studies including 
GWAS, transcriptome-wide association analysis, and copy number variation analysis18,78–81, 
emerged as a significant DE and DA risk gene in schizophrenia PRS extreme groups, 
specifically in excitatory neurons in superficial layers 2/3 (Exc_L2-3, Figures 4c-d, 6a-c), yet 
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showed no association with disease status. We explored its regulatory mechanisms using a 
correlation-based network that included gene expression, chromatin accessibility, PRSs, and 
disease status to visualize the multi-omic data used in our study (Figure 6d). The network 
revealed positive correlations within nodes of the same data modality but negative correlations 
across different node types. Notably, INO80E exhibited differential accessibility in Exc_L2-3 
among extreme genetic risk groups for cross-disorder and schizophrenia PRS. However, its 
correlation with gene expression fell below nominal significance, despite being a significant 
DE risk hit. Transcription factor motif enrichment analysis in INO80E's promoter region 
identified significant KLF4 motif enrichment (Table S10, Figure 6e). Although KLF4 has been 
associated with schizophrenia and reported to be downregulated in patients82, it was not 
expressed in Exc_L2-3 in our dataset. 
A second gene, HCN2, coding for a hyperpolarization-activated cation channel crucial in 
pacemaker activity in the heart and brain76, showed differential expression and accessibility 
(DE and DA risk gene) in Exc_L2-3 among extreme genetic risk groups for schizophrenia PRS 
(Figure 4c,e, 6f-g), with no significant dysregulation in other cell types (Figure 6h). The 
correlation-based network analysis for HCN2 (Figure 6i) indicated more positive correlations 
between data modalities than the INO80E network. Only with the network approach, HCN2's 
gene scores in Exc_L2-3 were positively correlated with bipolar disorder PRS and its 
expression in Exc_L2-3 showed positive correlations with other excitatory neuron populations, 
but negative correlations with VIP and SST interneurons (In_VIP and In_SST, Figure 6i). 
Transcription factor motif analysis in the HCN2 promoter identified several significant motifs 
(Table S10), notably for MAZ (Figure 6j) and ZNF148 (Figure 6k), with these genes being 
expressed and accessible in Exc_L2-3 and most other cell types. 
In summary, the network analysis emphasizes the importance of considering both genetic 
predisposition and diagnosis, particularly evident in the two genes identified as significant DE 
and DA genetic risk hits simultaneously, yet not as DE or DA genes. Such networks underscore 
the complex interplay of transcriptional and epigenetic mechanisms, providing valuable 
insights that deepen our understanding of schizophrenia.  
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3. Discussion 
In this study, we performed a comprehensive single-nucleus analysis on postmortem brain 
tissue from 92 donors, including 57 with psychiatric diagnoses. This research stands out for its 
extensive scale, analyzing gene expression in roughly 800,000 nuclei and assessing chromatin 
accessibility in approximately 400,000 nuclei from the orbitofrontal cortex, marking a 
significant advancement in nuclei count for a single-cell study in psychiatric research. Our 
findings revealed crucial differences in gene expression and chromatin accessibility primarily 
associated with genetic risk rather than diagnosis. Notably, glial cells predominantly showed 
molecular alterations associated with genetic risk genes, while neurons demonstrated a 
molecular response influenced by both diagnosis-related and genetic risk genes. Additionally, 
we identified distinct pathway enrichments in downregulated genes in microglia. 
In our study, the majority of genes exhibit differential expression in excitatory neurons among 
psychiatric cases and controls, consistent with prior literature findings26. However, it is 
essential to consider variations in detection power among cell types when interpreting these 
findings. Particularly noteworthy are SLIT2 and KCNQ3, previously implicated in psychiatric 
disorders but without specific cell type associations72,73. Our study reveals cell type-specific 
pathological alterations for these genes. SLIT2, exclusively dysregulated in excitatory neurons 
layers 4 to 6, cluster 1, has been linked to depression- and anxiety-like behaviour in mice72, the 
development of serotonergic and dopaminergic circuits in the forebrain83, and shaping 
vulnerability to suicide attempts84. Additionally, KCNQ3, was specifically downregulated in 
microglia, previously associated with reduced gene expression and altered DNA methylation 
in bipolar disorder73, and proposed as a novel target in depression and anhedonia treatment85. 
Our cell type-specific findings expand upon previous bulk tissue studies, offering insights for 
more in-depth investigations into disease consequences and potential new directions for 
therapeutic research. For instance, drugs targeting KCNQ3 expression in microglia could 
modulate gene expression levels or target specific cellular pathways involved in KCNQ3 
expression to counteract disease pathology. 
Our study aimed to investigate the correlation between gene expression and chromatin 
accessibility to discern if expression changes were influenced by chromatin alterations. Our 
findings indicate that at the cell type level there is generally a positive correlation between 
ATAC-seq signals near a gene and its expression (Supp. Figure 2c-d), consistent with prior 
research86. However, deviations exist for many genes, as observed in studies such as that by 
Sanghi et al., which identified less than 20% correlation for differential promoter elements and 
gene expression, and less than 5% correlation for non-differential promoter elements in a 
cancer cohort study87. Specifically, out of 872 differentially expressed genes, 867 exhibited 
changes in gene expression without corresponding alterations in nearby chromatin 
accessibility. This suggests that transcriptomic changes in psychiatric disorders could occur 
independently of alterations observed in chromatin accessibility. Moreover, focusing on 
differentially accessible genes corresponding to differentially expressed genes, we identified a 
small subset of genes with alterations in both gene expression and chromatin accessibility 
between psychiatric cases and controls (n=24 out of 872 genes). For instance, HES4 was 
consistently downregulated in gene expression and chromatin accessibility in excitatory 
neurons layers 4 to 6, cluster 1, previously associated with abnormal psychomotor behavior in 



11 

schizophrenia88. Epigenetic dysregulations in HES4 have also been shown to be related to 
neuronal development and neurodegeneration in postmortem brains89. Similarly, IGFBP5, 
showed upregulation in both gene expression and chromatin accessibility in OPCs, associated 
with depressive symptoms and cognitive dysfunction in aging90. These findings highlight the 
complex interplay between gene expression and chromatin accessibility in psychiatric 
disorders. Considering that environmental factors like stress or lifestyle choices, relevant to 
psychiatric diseases91, can influence epigenetic modifications and affect chromatin structure 
and gene expression92, exploring these relationships becomes even more crucial. Further 
studies employing alternative or more specific types of epigenetic regulation, such as histone 
modification analysis, may provide deeper insights into the regulatory mechanisms underlying 
psychiatric disorders. 
Building on our findings, we examined the significance of genetic risk factors. Our analysis 
showed distinct regulatory patterns associated with genetic risk across disorders and 
specifically in bipolar disorder, MDD and schizophrenia, which were highly different between 
traits and from those associated with diagnosis. This difference highlights the complex 
interplay between genetic and epigenetic factors, which are likely influenced by environmental 
factors in psychiatric disorders91. The little overlap of differentially expressed genes associated 
with genetic risk for psychiatric disorders and differentially expressed genes associated with 
disease status underscores the importance of investigating genetic risk independently of clinical 
diagnosis. This distinction becomes crucial given the inherent limitations and variability of 
diagnosis, which might not always accurately reflect the actual nature or severity of a 
psychiatric condition3,93. Our study contributes to the foundation for future research aimed at 
integrating these findings into a comprehensive tool that considers both risk factors and 
diagnoses, not just in isolation but in a synergistic manner for enhanced diagnostic and research 
applications. By focusing on extreme groups rather than treating genetic risk as a continuous 
variable, we applied a robust approach that has demonstrated reliability in previous studies11–

14,62. 
Our findings highlight distinct influences of genetic risk and clinical diagnosis on various cell 
lineages, particularly neuronal and glial populations, with genetic risk genes exhibiting larger 
effect sizes (Supp. Figure 9). Excitatory neurons, a key neuronal class, exhibited significant 
alterations influenced by diagnosis as well as genetic risk in both ATAC-seq and RNA-seq 
data. This aligns with the understanding that neuronal populations are directly involved in the 
synaptic and circuit-level changes often associated with psychiatric conditions94. In contrast, 
endothelial cells and glial populations, such as astrocytes, OPCs and microglia, were more 
distinctly influenced by genetic risk factors (76%-97% of the genes are unique DE or DA risk 
genes). This intriguing result suggests that glial cells, traditionally viewed as support cells, may 
play a more active role in the genetic predisposition to psychiatric disorders95. The differential 
impact observed across cell lineages suggests that while some may have a genetic 
predisposition to psychiatric disorders, others are more reactive to disease-associated 
pathophysiological changes, underscoring the importance of examining neuronal, endothelial, 
and glial roles in psychiatric research. This distinction was not as evident in previous bulk 
studies, which often obscured cell type-specific dynamics due to their aggregated nature. 
Our study revealed minimal overlap of genes between the diagnostic and genetic risk analyses. 
However, an interesting aspect is that despite this minimal overlap, the affected pathways often 
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correspond. This observation may stem from the functional convergence of affected genes, 
besides a potential lack of power to detect more overlapping genes. For instance, we identified 
a significant enrichment of ribosomal processes in genes upregulated in oligodendrocytes, 
OPCs, and endothelial cells. This finding aligns with previous research linking ribosomal 
dysregulation to psychiatric disorders96,97. Dysfunction in ribosomal processes could impact 
key features like protein synthesis and synaptic function in psychiatric conditions98. 
Furthermore, pathways related to neurodegenerative diseases and oxidative phosphorylation 
were enriched in various cell types, suggesting complex regulation across cell populations. 
Perturbations of protein synthesis as well as oxidative stress, usually caused by an imbalance 
of oxidative phosphorylation and the removal of its byproduct, can lead to excitation/inhibition 
imbalance implicated in the pathophysiology of schizophrenia97,99. Specifically, the unique 
dysregulation pattern observed in genes downregulated in microglia reflects their critical role 
in brain health100, potentially linked to increased inflammation and stress-induced brain 
changes implicated in psychiatric disorders like schizophrenia101–103. The ability of microglia 
to adapt and switch roles in response to inflammation104 may underlie this observed unique 
dysregulation pattern, reflecting their complex and multifaceted roles in the intricate 
relationship between microglia, inflammation, and psychiatric conditions. 
While our analysis revealed very few differentially accessible genes between cases and 
controls, we noticed a significantly higher number of differentially accessible genes compared 
to differentially expressed genes associated with genetic risk for psychiatric disorders (6,418 
vs. 141, Supp. Figure 7a+8a). The only genes observed as significant in both differential 
expression and accessibility analysis for genetic risk are INO80E and HCN2 in excitatory 
neurons layers 2/3 for schizophrenia. INO80E has been highlighted before as a promising drug 
target as it is a GWAS, TWAS and CNV hit for schizophrenia78, while HCN2 has been 
identified as differentially methylated in the prefrontal cortex and hippocampus in 
schizophrenic patients105,106 and its knockdown leads to antidepressant behavior in 
rodents107,108. Taken together, these results suggest that chromatin accessibility alterations play 
a more prominent role in the genetic basis of psychiatric disorders compared to changes in gene 
expression levels. Chromatin accessibility may represent an earlier or more fundamental level 
of genetic regulation, influencing a gene's potential for expression before actual changes in 
gene expression occur, as it is also the case for developmental processes in the cortex109. This 
implies that chromatin accessibility serves as a more sensitive marker for genetic 
predispositions to psychiatric disorders.  
Following our observation of distinct genetic risk mechanisms and diagnosis, and with the 
ultimate goal of creating a diagnostic tool, we conducted an integrative correlation-based 
network analysis of the key affected genes, including INO80E and HCN2. It revealed that 
correlations tend to be positive within the same data modality (e.g. gene expression, PRS) and 
negative between different modalities, indicating that gene expression or accessibility 
differences linked to genetic risk may not align with linear trends in genetic risk scores, though 
these scores tend to correlate more with chromatin accessibility than gene expression. In 
exploring regulatory elements of INO80E and HCN2, our transcription factor motif analysis 
identified a KLF4 motif enrichment for INO80E. The absence of KLF4 expression and 
accessibility in excitatory neurons layers 2/3 in our dataset suggests a potential mismatch in 
the timing of KLF4 expression or the involvement of a different, unidentified transcription 
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factor. For HCN2, the numerous enriched motifs suggest intricate, cell-context-specific 
transcriptional regulation. 
Our findings highlight the complexities in gene regulation. The inconsistent correlation 
between gene expression and chromatin accessibility suggests that other regulatory 
mechanisms, including trans-regulatory elements and additional epigenetic layers like DNA 
methylation and histone modifications, are at play. These aspects, while not covered in our 
study, underscore the multifaceted nature of genomic regulation in psychiatric disorders. Our 
study, with one of the largest single-cell datasets in psychiatric research (n=92 donors and 
~800,000/400,000 nuclei), marks a significant advancement in understanding these disorders. 
Although the study is substantial, further research is needed to fully capture the genetic and 
epigenetic diversity in the affected population. Additionally, our cohort's limitation to 
individuals of European ancestry highlights a common issue in psychiatric research: the 
underrepresentation of diverse populations in biosample collections. There is a critical need 
within the research community to gather more inclusive samples, ensuring findings are 
applicable across varied ethnic backgrounds. 
Subsequent investigations could include the inference of cell type-specific gene regulatory 
networks, offering a more comprehensive view of the regulatory mechanisms underlying the 
observed transcriptional and epigenomic alterations. Building on the identified molecular 
signatures, future research also needs to focus on developing targeted therapies or repurposing 
existing drugs to specifically address the underlying molecular perturbations associated with 
psychiatric disorders.  
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4. Methods 

4.1. Human postmortem brain samples 
As previously described37,38, ethics approval was obtained from both the Ludwig Maximilians-
Universität (22-0523) and the Human Research Ethics Committees at the University of 
Wollongong (HE2018/351). Donors or their next of kin provided informed consent for brain 
donation. Utilizing fresh-frozen postmortem tissues of the orbitofrontal cortex (Brodmann area 
(BA) 11 dissected from the 3rd 8-10mm coronal slice), sourced from the NSW Brain Tissue 
Resource Centre in Sydney, Australia, we conducted single-nucleus RNA-sequencing 
(snRNA-seq) and single-nucleus ATAC-sequencing (snATAC-seq). Our study encompassed a 
cohort of 92 donors. This included 35 psychiatrically healthy controls and 57 cases diagnosed 
with schizophrenia, schizoaffective disorder (SCA), major depressive disorder (MDD), or 
bipolar disorder (n=38;7;7;5, respectively). The case and control groups were matched in terms 
of sex (38% female representation), age (mean ± s.d. = 54.27 ± 13.64), postmortem interval 
(mean ± s.d. = 33.90 ± 14.82), and brain pH (mean ± s.d. = 6.60 ± 0.24), see Table S1. 

4.2. Nuclei isolation and single-nucleus RNA and ATAC sequencing  
Nuclei were extracted from ~50 mg frozen postmortem brain tissue (BA11) as previously 
described37. In short, tissue was homogenized using dounce-homogenization in 1 ml nuclei 
extraction buffer (10 mM Tris-HCl pH 8.1, 0.1 mM EDTA, 0.32 M Sucrose, 3 mM Mg(Ac)2, 
5 mM CaCl2, 0.1% IGEPAL CA-630, 40 U/ml RiboLock RNase-Inhibitor (ThermoScientific)). 
Next, homogenate was layered onto 1.8 ml of sucrose cushion (10 mM Tris-HCl pH 8.1, 1.8 
M Sucrose, 3 mM Mg(Ac)2) and ultra-centrifuged at 28,100 rpm at 4°C for 2.5 hours (Thermo 
Scientific™ Sorvall™ WX+ 471 ultracentrifuge). Using vacuum suction supernatant was 
removed and nuclei pellet was gently resuspended in 80 μl resuspension buffer (1X PBS, 3 
mM Mg(Ac)2, 5 mM CaCl2, 1% BSA, 40 U/ml RiboLock RNase-Inhibitor). From the same 
nuclei suspension sn-ATAC libraries and sn-RNA libraries were simultaneously prepared 
using Chromium Next GEM Single Cell ATAC Kit v1.1 and Chromium Next GEM Single 
Cell 3’ Kit v3.1 respectively; following the manufacturer’s instructions. We aimed to recover 
10,000 nuclei per sample for both sn-ATAC and sn-RNA libraries. Libraries of the different 
donors were pooled equimolarly for each of the snATAC and snRNA libraries. Illumina Free 
Adaptor blocking Reagent was applied as per manufacturer’s instructions. Libraries were 
sequenced on the NovaSeq 6000 System (Illumina, San Diego, California, USA). 

4.3. Processing of single-nucleus data 
4.3.1. snRNA-seq data workflow 

Initial processing of the snRNA-seq data, including the alignment of reads to a pre-mRNA 
reference (genome build GRCh38, Ensembl 98), cell barcoding and UMI counting, was 
performed with Cell Ranger (cellranger count v6.0.1)39. To account for significant differences 
in sequencing depth between cells and samples, we downsampled reads to the 75% quantile 
which corresponds to 14,786 reads per cell. This downsampling procedure was performed with 
the downsampleReads method from the DropletUtils package v1.12.240, brought the 
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sequencing depth of cells in different samples to a more comparable level and prevented biases 
in the analysis.  
Count matrices of all donors were combined and further processed in Python (Python Software 
Foundation, https://www.python.org/), primarily using Scanpy v1.7.141. Nuclei were filtered 
according to counts, minimum genes expressed and percent of mitochondrial genes (counts < 
500, genes < 300, Mito % ≥ 15). Genes expressed in < 500 nuclei were removed. One individual 
was filtered out due to overall low data quality, coinciding with a low RIN value. To ensure 
data integrity and the accuracy of our analysis, we conducted doublet removal using the 
DoubletDetection package v3.042. Data was normalized and log-transformed using sctransform 
v0.3.243. Highly variable genes were identified and dimensionality reduction, including 
principal component analysis (PCA) and uniform manifold approximation and projection 
(UMAP) was performed with Scanpy41. Nuclei were clustered based on highly variable genes 
using the leiden clustering algorithm44 (resolution 1.0). Four donors were filtered out due to the 
fact that more than 50% of their nuclei were located within one cluster, resulting in 787,046 
nuclei from 87 donors, see Table S2. 
 

4.3.2. snATAC-seq data workflow 
The initial processing of the snATAC-seq data, including the alignment of reads to a reference 
(genome build GRCh38, Ensembl 98), cell calling and count matrix generation, was performed 
with Cell Ranger ATAC (cellranger-atac count v2.0.0)45. 
Further processing of the data was performed in R v4.0.546 with the ArchR package v1.0.247. 
During per-cell quality control, nuclei with a transcription start site (TSS) enrichment score < 
4 were excluded due to a low signal-to-noise ratio. Furthermore, nuclei with less than 1,000 or 
more than 100,000 unique nuclear fragments were filtered out. Doublet scores were inferred in 
ArchR47 and respective doublets were removed with a filter ratio of 2.5. One donor was filtered 
out due to overall low data quality, coinciding with a low RIN value. Iterative latent semantic 
indexing (LSI) was used for dimensionality reduction in order to handle the high sparsity of 
snATAC-seq data. From this lower dimensional space, a UMAP embedding was inferred for 
visualization purposes. Nuclei were clustered with resolution 1.0 via an interface to the 
FindClusters method from Seurat v4.0.448 which is based on the louvain clustering algorithm49. 
During a final filtering, another donor with the majority of its nuclei clustering together and six 
clusters with low data quality regarding doublet scores and number of fragments were removed, 
resulting in 399,439 nuclei from 90 donors, see Table S2. 
To assess chromatin accessibility directly at the gene level, gene scores were calculated with 
ArchR. Gene scores are estimates of gene expression predicted from the accessibility of the 
regulatory region surrounding a gene (100 kb up- and downstream), whereby the signal is 
weighted by the distance to the gene47. 
 

4.3.3. Cell type assignment of snRNA-seq and snATAC-seq data 
An initial cell type assignment to clusters of nuclei in the snRNA-seq data was carried out using 
a label transfer algorithm (scArches v0.4.050/scANVI51). Thereby, cell type labels were adopted 
from a cortical dataset of the Allen Brain Map (Human Multiple Cortical Areas52) to our 
snRNA-seq dataset, employing a variational inference model. Each cluster was labeled with 
the cell type assigned to the majority of nuclei within this cluster. Subsequently, the cell type 

https://www.python.org/
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labels were fine-tuned through manual curation based on the expression of known marker 
genes, as previously decribed37. Marker genes included: Astrocytes: AQP4, CLU, GFAP, 
GJA1; Endothelial: CLDN5, COBLL1, FLT1, SYNE2; Excitatory neurons: SATB2, SLC17A6, 
SLC17A7; Inhibitory neurons: GAD1, GAD2, NXPH1, SLC32A1; Microglia: APBB1IP, C3, 
P2RY12; Oligodendrocytes: MPB, MOBP, PLP1, RNF220; Oligodendrocyte Precursors 
(OPC): OLIG1, OLIG2, PDGFRA, VCAN. Astrocyte subtypes: higher GFAP and ARHGEF4 
expression (fibrous astrocytes (Astro_FB)) vs. higher expression of ATP1A2, GJA1 and SGCD 
(protoplasmic astrocytes (Astro_PP))53. Excitatory neuron subtypes were labeled based on the 
expression of cortical-layer specific marker genes: layers 2-3: CUX2, RFX3; layer 4: 
IL1RAPL2, CRIM1, RORB; layers 5-6: RXFP1, TOX, DLC1, TLE434,53. Inhibitory neuron 
subtypes were labeled based on the expression of interneuron markers LAMP5, PVALB, RELN, 
SST, and VIP. PVALB inhibitory neurons consisted of two subtypes: basket cells 
(In_PVALB_Ba) and chandelier cells (In_PVALB_Ch; identified based on the high expression 
of RORA, TRPS1, NFIB, and UNC5B)54. 
For the initial assignment of cluster identities in the snATAC-seq data, the data was integrated 
with snRNA-seq data in ArchR47 via a parallelized interface to the FindTransferAnchors 
function in Seurat48. Nuclei from snATAC-seq are getting aligned with nuclei from scRNA-
seq by comparing the gene score matrix with the gene expression matrix. Each snATAC-seq 
nucleus is labeled with the cell type of the most similar scRNA-seq nucleus. Adjacently, cluster 
identities were refined manually based on gene scores of the marker genes mentioned above. 
Although known marker genes of endothelial cells did not exhibit distinct gene scores in the 
cluster labeled as endothelial cells, the cluster’s clear separation of other clusters, the 
unambiguous assignment as endothelial cells via label transfer and imputed gene scores55 
allowed for a confident assignment of the cluster as endothelial cells. 
 

4.3.4. Pseudobulk replicates of snRNA-seq and snATAC-seq data 
To enable downstream analyses that require replicates with measurements of statistical 
significance, such as peak calling on ATAC-seq data or differential testing on either data 
modality, pseudobulk replicates were created. Specifically, gene expression and chromatin 
accessibility count matrices were summed up from the cells within each cell type-donor pair, 
creating pseudobulk replicates resembling bulk RNA-seq and ATAC-seq data per cell type.  
The pseudobulk replicates used for cell type-specific peak calling were generated with an 
ArchR method summarizing multiple sufficiently similar donors within a cell type to 
circumvent sparsity. Since such multi-individual pseudobulk replicates are not suitable for our 
downstream analyses, the ArchR-generated replicates were only used during peak calling. 
 

4.3.5. Peak calling on snATAC-seq data 
Peak calling was performed per cell type in ArchR47 based on pseudobulk replicates via an 
interface to MACS256. To facilitate downstream computation, peaks have a fixed width of 501 
bp and are merged across pseudobulk replicates and cell types via a ranking of peaks by 
normalized significance and the iterative removal by overlap. The resulting matrix contains a 
single merged peak set of fixed-width peaks. 
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4.4. Genotype data 
4.4.1. DNA extraction, SNP genotyping and imputation 

From 10 mg brain tissue genomic DNA was isolated using the QIAamp DNA mini kit (Qiagen) 
according to manufacturer’s instructions. Following extraction, DNA samples were 
concentrated using the DNA Clean & Concentrator-5 (Zymo Research). 
Samples were genotyped with Illumina GSA-24v2-0_A1 arrays, following the manufacturer's 
protocols (Illumina Inc., San Diego, CA, USA). Quality control (QC) was performed in PLINK 
v1.90b3.3057. Sample QC included removal of donors with a missing rate > 2%, as well as 
cryptic relatives (PI-HAT > 0.125). Donors with autosomal heterozygosity deviation (|Fhet| > 
4 SD) and genetic outliers (distance in ancestry components from the mean > 4 SD) were also 
excluded. Variants with a call rate < 98%, a minor allele frequency (MAF) < 1%, and p-values 
from the Hardy-Weinberg equilibrium (HWE) test equal ≤ 10-6 were removed during variant 
QC. Imputation was conducted using shapeit258 and impute259, making use of the 1000 
Genomes Phase III reference sample. Imputed SNPs with an INFO score below 0.6, MAF < 
1%, or deviation from Hardy-Weinberg equilibrium (p-value < 1 × 10-5) were excluded from 
further analysis, resulting in a final set of 9,652,209 SNPs in 92 donors. 
 

4.4.2. Calculation of polygenic risk scores (PRS) 
Summary statistics of GWAS studies for a cross-disorder phenotype5, schizophrenia11, MDD12, 
bipolar disorder13 and height60 (as a non-psychiatric control) were used to calculate polygenic 
risk scores (PRS). Posterior effect sizes were inferred from the GWAS summary statistics using 
PRS-CS v1.0.061. The linkage disequilibrium (LD) reference panel used was the one based on 
the European samples of the 1000 Genomes Project phase 3, as accessible on the PRS-CS 
GitHub page. For schizophrenia, a highly polygenic trait, we set the global shrinkage parameter 
(phi) of PRS-CS to 0.01, while no specific phi parameter was specified for the other traits, 
given the larger sample size of the GWAS studies, allowing phi to be derived from the data. 
PRS per donor were calculated from the previously inferred posterior effect sizes in PLINK 
v2.00a2.3LM57 with the score parameter. 

4.5. Differential analysis 
4.5.1. Definition of disease status for differential testing 

Differential expression (DE) and differential accessibility (DA) was tested between all donors 
with a psychiatric diagnosis (schizophrenia, schizoaffective disorder (SCA), bipolar disorder 
or MDD) against all donors in the control group. Psychiatric disorders were analyzed as a cross-
disorder phenotype due to their shared genetic risk and overlapping symptomatology3–5, 
thereby increasing statistical power of the analyses and enabling the identification of shared 
molecular dysregulations and underlying pathways. 
 

4.5.2. Definition of groups for testing between high and low genetic risk 
To assess DE and DA also with regard to overall genetic predisposition, differential testing was 
performed between donors with high and low genetic risk for a trait or disease. Acknowledging 
the consensus within the research community that reliable risk predictions are most feasible at 
the extreme ends of the PRS distribution14,62, we categorized genetic risk into binary groups 
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representing these extremes rather than treating it as a continuum. Specifically, we selected 20 
donors with the highest PRS and 20 donors with the lowest PRS within the cohort for each trait 
or disease. 
Subsequently, we employed propensity score matching to identify subsets of extreme groups 
that are matched based on key covariates such as age, sex, brain pH, PMI, RIN (Figure 4a). 
Sex was matched exactly (Supp. Figure 6). We used the matchit function from MatchIt v4.5.563  
for this purpose. The resulting number of donors in each extreme group ranges from 11 to 17, 
with specific counts being: 17 donors for both high and low PRS groups in cross-disorder, 13 
donors for both groups in schizophrenia, 14 donors for both groups in bipolar disorder, 11 
donors for both groups in MDD, and 14 donors for both groups in height. 
 

4.5.3. Selection of covariates for differential testing between disease status and extreme 
genetic risk groups 

To comprehensively evaluate the impact of biological variables and batch effects on the data 
and to select relevant covariates for differential testing, we assessed the impact of potential 
confounders on the RNA-seq data. Given the assumption that technical covariates remain 
consistent across cell types, a full pseudobulk count matrix was created by summing gene-wise 
counts across all cell types. Only genes with a minimum of 10 counts in at least 90% of the 
samples were retained for the covariate selection process. Data was normalized with the 
variance stabilizing transformation in DESeq264 and principal component analysis was applied. 
A significant correlation between continuous variables and one of the first 10 principal 
components was observed for RNA integrity number (RIN), postmortem interval (PMI), pH 
and age. Further exploration using canonical correlation analysis identified the library 
preparation batch (lib_batch) as a covariate. However, the inclusion of the library preparation 
batch into the model was limited to disease status, owing to the insufficiency of observations 
within each batch in the genetic risk model to support a categorical variable in the genetic risk 
model. Additionally, we included sex as a commonly known confounder as a covariate into our 
model.  
To account for hidden noise, principal component analysis was performed after having 
normalized and transformed the data and regressed out the effect of all mentioned covariates 
and our variable of interest (disease status (Disease_Status) or genetic risk group 
(Genetic_Risk) respectively) of the data using voom and removeBatchEffect from the limma 
package v3.5665. We included the first principal component (PC_noise) as additional covariate 
into our final model for differential testing: (~Disease_Status/Genetic_Risk + Sex + Age + pH 
+ RIN + PMI + lib_batch + PC_noise). RIN was not present for one donor and therefore 
imputed to the median value across the cohort. 
To keep analyses consistent and due to the fact that snRNA-seq and snATAC-seq data were 
generated from the exact same tissue, and library preparation was performed in the same 
batches for both data modalities, the same covariates – except RIN – were included into the 
final model of differential chromatin accessibility analysis.   
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4.5.4. Differential expression analysis 
DE was tested on the pseudobulk level with DESeq2 v1.40.264. For each cell type-specific 
count matrix, genes were filtered for a minimum of 10 counts in 75% of the pseudobulk 
samples. After data normalization with the variance stabilizing transformation in DESeq264, 
outlier samples were excluded by iterative PCA and the removal of samples with a distance of 
more than 3 standard deviations from the mean on the first PC. We tested for DE with DESeq2 
using the Wald test. Genes with a false discovery rate (FDR) ≤ 10% were reported as 
significant, given that the pseudobulk approach is considered more conservative than single-
cell DE methods66,67. 
 

4.5.5. Differential chromatin accessibility analysis  
DA was tested on the pseudobulk level for each cell type using gene scores. As gene scores do 
not follow the typical characteristics of count data, differential testing was not performed with 
DESeq2. Pseudobulk gene scores were normalized by the number of cells aggregated per 
pseudobulk sample and outliers were filtered the same way as during DE analysis. Genes 
exhibiting scores above 0.1 in less than 75% of the samples were filtered out and removed from 
further analysis. After the fitting of a linear model including the previously described 
covariates, a Wald test was performed and log2-fold changes were calculated. Genes with FDR 
≤ 10% were considered as significant. 
 

4.5.6. Differential risk group analysis 
Differential risk group analyses of gene expression (DE risk analysis) and chromatin 
accessibility (DA risk analysis), comparing donors in high and low genetic risk groups for a 
phenotype, was performed analogously to differential testing between cases and controls. Gene 
filtering, normalization and outlier removal followed the same principles and genes with FDR 
≤ 10% were considered significant.  

4.6. Functional annotation 
4.6.1. Pathway enrichment analysis 

Pathway enrichment analysis was conducted with clusterProfiler v4.8.168. The 250 genes with 
the most significant up- and downregulation for each cell type according to FDR values were 
assessed for over-representation of KEGG pathways. The choice of not only testing the 
significant DE and DA genes was made in order to make this analysis comparable between cell 
types. 250 genes per direction of downregulation corresponds to about 50% of the number of 
DE genes in Exc_L2-3, the cell type with the highest number of DE genes between cases and 
controls. Any KEGG pathway significant in at least one cell type (FDR ≤ 0.05) is shown in the 
respective heatmaps. To summarize single KEGG pathways in categories, a hierarchy of 
KEGG pathways was downloaded from the KEGG Pathway Database 
(https://www.genome.jp/kegg/pathway.html, accessed: June 19th, 2023) and used to annotate 
the enrichment heatmap. 
  

https://www.sciencedirect.com/topics/neuroscience/false-discovery-rate
https://www.genome.jp/kegg/pathway.html
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4.6.2. Transcription factor motif enrichment analysis 
To assess if peaks in the promoter regions of a given gene are enriched for binding sites of 
specific transcription factors (TFs), a TF motif enrichment analysis was performed within the 
ArchR framework. As an initial step, the addMotifAnnotation function was used to obtain 
binary information for each peak-TF pair whether a respective motif is present in the peak or 
not. TF motif information was obtained from the JASPAR 2020 database69. Subsequently, an 
adapted version of the peakAnnoEnrichment was applied to test the peaks in a given gene’s 
promoter region for enriched presence of TF motifs compared to the presence in all peaks using 
a hypergeometric test. TF motifs with an adjusted p-value ≤ 0.05 were reported as significantly 
enriched. 

4.7. Comparison to previous findings 
We conducted a comparative analysis of DE results for disease status against previously 
documented cell type-specific transcriptomic changes in the prefrontal cortex of schizophrenia 
patients. This comparison aimed to evaluate the reproducibility of our findings in relation to 
other studies. Effect sizes were correlated with those reported in a single-cell RNA-seq meta-
analysis by Ruzicka et al. (sample sizes: 140; cell counts: 469K)26. For each cell type pair, we 
calculated Pearson’s correlation coefficient to measure the relationship between effect sizes for 
all genes examined in both studies. 

4.8. Network inference 
For given genes which are differentially expressed and accessible between extreme genetic risk 
groups for schizophrenia, correlation-based networks were inferred to integrate gene 
expression and chromatin accessibility across the different cell types as well as disease status 
and PRS for the aforementioned disorders and traits. The analysis was based on the donors that 
are part of the extreme genetic risk groups for schizophrenia. Gene expression and gene score 
levels were normalized and corrected for sex, age, RIN, PMI, pH and the library preparation 
batch. Spearman correlation was calculated between each pair of features. Correlations with a 
nominal p-value ≤ 0.05 are shown in each network and edge strength/weight transfers to the 
absolute correlation coefficient. Networks were visualized with the igraph70 and ggnetwork71 
packages in R.  
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Figures  

 
Figure 1. Single-nucleus transcriptomic and epigenomic profiling in the orbitofrontal cortex. (A) Schematic 
representation of experimental procedures and data modalities. Nuclei were extracted from the orbitofrontal cortex 
of 57 cases and 35 controls. Single-nucleus (sn) RNA-seq and ATACseq data was integrated with genotype data 
and medical records. (B) UMAP representations of snRNA-seq (~800,000 nuclei) and snATAC-seq (~400,000 
nuclei) data colored by the assigned cell type labels. 19 cell types were assigned to the snRNA-seq data and 15 to 
the snATAC-seq data. (C) Dotplot showing the gene counts in snRNA-seq data of representative marker genes, 
grouped by major cell types. Color indicates the mean gene counts and size of dots represents the fraction of nuclei 
with a gene count > 1. (D) Dotplot showing the gene score levels in snATAC-seq data of representative marker 
genes, grouped by major cell types. Color indicates the mean gene score level and size of dots represents the 
fraction of nuclei with a gene score > 1.0. (E) Number of nuclei obtained per cell type following quality control 
colored by cell type. Data modality is indicated by hatching. (F) Significance of differences in cell type proportions 
between snRNA-seq and snATAC-seq data. Height of the bar represents -log10-transformed FDR values of a two-
sided Wilcoxon signed-rank test and the dashed red line corresponds to the FDR cutoff of 0.05.  
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Figure 2. Transcriptional alterations between psychiatric cases and controls. (A) UpSet plot showing the 
number of differentially expressed (DE) genes (FDR ≤ 0.1) per cell type (left) and the overlap of DE genes 
between cell types (right). (B) Dotplot of DE genes with log2-fold change on the y-axis and -log10-transformed 
FDR values represented by dot size. (C,F) Boxplot of normalized gene expression level for SLIT2 (C) and KCNQ3 
(F) in controls and cases. (D,G) Dotplot of log2-fold changes of SLIT2 (D) and KCNQ3 (G) in each cell type. Dot 
size represents -log10-transformed FDR values. (E,H) UMAP representation of single-nucleus RNA-seq data 
colored by normalized expression of SLIT2 (E) and KCNQ3 (H).  
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Figure 3. Epigenomic alterations between psychiatric cases and controls. (A-B) Results of differential 
chromatin accessibility (DA) analysis when testing all genes passing filtering step (A) and only DE genes (B). 
Barplot on top shows the number of significant DA genes per cell type (FDR ≤ 0.1). Log2-fold changes (FCs) for 
all tested genes are shown in dotplot with color indicating the DA significance and dot size indicating the -log10-
transformed FDR value. No overlap was observed between DA genes in different cell types. (C-D) Genome tracks 
visualizing normalized ATAC signal in a 100kb window surrounding the gene body of HES4 (C) and IGFBP5 
(D). HES4 in excitatory neuron layers 4 to 6, cluster 1 (Exc_L4-6_1), had FDR values of 0.04 (RNA) and 2.21x10-

3(ATAC) with FCs of -0.28 (RNA) and -0.43 (ATAC). Similarly, IGFBP5 in oligodendrocyte precursor cells 
(OPCs) showed FDR values of 1.70x10-5 (RNA) and 0.08 (ATAC) with FCs of 0.33 (RNA) and 0.21 (ATAC).  
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Figure 4. Gene regulatory differences between extreme genetic risk groups. (A) Schematic overview of the 
definition of extreme genetic risk groups using propensity score matching (see Methods). (B-C) Dotplots of DE 
(B) and DA (C) genetic risk analyses between extreme genetic risk groups based on 5 different GWAS studies. 
Each dot represents a significant genetic risk gene (FDR ≤ 0.1). Color indicates the GWAS study, while dot size 
represents -log10-transformed FDR values. Gray dots in (B) represent DE genetic risk genes that are also DE genes 
between cases and controls in the same cell type, while gray dots in (C) represent DA genetic risk genes that are 
also DE risk genes in the same cell type. (D-E) Genome tracks visualizing normalized ATAC signal in a 100kb 
window surrounding the gene body of INO80E (D) and HCN2 (E).  
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Figure 5. Disease-relevant pathway enrichments. Heatmaps of KEGG pathway enrichment results for the 250 
most up- and downregulated DE genes per cell type comparing cases and controls. All pathways significantly 
enriched in at least one cell type are included in the heatmap, with color representing -log10-transformed FDR 
values and asterisks indicating significance (FDR ≤ 0.05). Pathway annotations on the left indicate their pathway 
group and family, and dendrograms visualize k-means clustering of cell types according to enrichment results.  
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Figure 6. Cell type-specific gene regulation of INO80E and HCN2 related to genetic risk for schizophrenia. 
(A,B,F,G) Boxplots showing gene expression (A,F) and chromatin accessibility (B,C) of INO80E (A,B) and 
HCN2 (F,G) for extreme genetic risk groups as well as disease status. (C) Heatmap visualizing the log2-fold 
changes of INO80E from DE and DA genetic risk analysis for schizophrenia. Asterisks indicate significance (FDR 
≤ 0.1). (D,I) Correlation-based network for INO80E (D) and HCN2 (I) inferred from PRS for cross-disorder 
phenotypes, bipolar disorder, MDD, schizophrenia and height, disease status as well as gene expression and 
chromatin accessibility across cell types. All nominally significant correlations are shown (P ≤ 0.05). Node color 
indicates the cell type, color of node labels indicates the node family/data modality, edge thickness relates to 
correlation strength and edge color indicates whether the correlation is positive or negative. (E,J,K) Transcription 
factor motif for KLF4 (E), MAZ (J), and ZNF148 (K), as sourced from JASPAR69. 


