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ABSTRACT 
 
Propensity score adjustment addresses confounding by balancing covariates in subject treatment groups 
through matching, stratification, inverse probability weighting, etc. Diagnostics ensure that the adjustment 
has been effective. A common technique is to check whether the standardized mean difference for each 
relevant covariate is less than a threshold like 0.1. For small sample sizes, the probability of falsely 
rejecting the validity of a study because of chance imbalance when no underlying balance exists 
approaches 1. We propose an alternative diagnostic that checks whether the standardized mean difference 
statistically significantly exceeds the threshold. Through simulation and real-world data, we find that this 
diagnostic achieves a better trade-off of type 1 error rate and power than standard nominal threshold tests 
and not testing for sample sizes from 250 to 4000 and for 20 to 100,000 covariates. In network studies, 
meta-analysis of effect estimates must be accompanied by meta-analysis of the diagnostics or else 
systematic confounding may overwhelm the estimated effect. Our procedure for statistically testing 
balance at both the database level and the meta-analysis level achieves the best balance of type-1 error 
rate and power. Our procedure supports the review of large numbers of covariates, enabling more 
rigorous diagnostics. 
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INTRODUCTION 
 
One of the major challenges facing observational research is the risk of producing a biased estimate due 
to confounding. Propensity score adjustment, invented 40 years ago [1], is a commonly used solution for 
measured confounders. It is a balancing score in the sense that matching subject treatment groups based 
on the score tends to balance all of the covariates used to estimate the score. Applying the score to a 
causal analysis can be done in several ways—matching, stratification, inverse probability treatment 
weighting, etc.—but the result is the same: removing the effect of the confounder on the causal estimate. 
Causal inference methods require diagnostics to ensure that any attempted adjustment has been 
successful. Propensity score adjustment is often assessed [2] using the standardized mean difference of 
suspected confounders among the treatment groups [3]. A high standardized mean difference reflects 
imbalance among the treatment groups and potentially ineffective adjustment for that confounder. 
 
It is known that standardized mean difference can falsely reject studies when sample size is too small or 
too large. With small sample sizes, chance imbalance can cause large deviations of the standardized mean 
difference from zero. Austin [3] suggests measuring the empirical distribution of the standardized mean 
difference to account for chance imbalance, but this is rarely done in practice. Additional improvements 
such as comparing moments beyond the mean have been suggested [3] but are essentially never used. 
With large sample sizes, small degrees of systematic imbalance can be detected even though imbalance at 
that level is unlikely to cause an appreciable change in the effect estimate [3]. Researchers often pick a 
threshold to which a nominal estimate of the standardized mean difference can be compared; 0.1 is 
chosen most often [3-15] but 0.25 has also been used [11,12]. These thresholds are large enough to 
accommodate chance imbalance in moderate to large studies and to accommodate real but likely 
unimportant deviations in balance. 
 
The problem of chance imbalance grows as sample size decreases, either due to a small observational data 
source or an uncommon treatment. The problem also grows with the number of covariates. Traditional 
manual selection of confounders leads to 5 to 20 or more covariates. High-dimensional propensity score 
adjustment [16] leads to hundreds of covariates. Large-scale propensity score adjustment [17,18] leads to 
tens of thousands of covariates. The probability of falsely rejecting a study that has no confounding or 
instruments can be calculated. Assume the diagnostic checks for standardized mean difference with a 
threshold of 0.1, and assume J independent binary covariates each of prevalence 0.5. The variance, σd

2, of 
the standardized mean difference, d, can be approximated as follows [19]: 
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where n1 and n0 are the sizes of the two treatment groups and d is the standardized mean difference. Given 
d is small and assuming two equally sized treatment groups, the probability of false rejection is then given 
by: 
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where Φ is the cumulative distribution function of the standard normal distribution and N is the total 
sample size, n1+n0. With a sample size of 250, it takes only 5 covariates to reject 90% of studies by 
chance, and with a sample size of 1000, it takes 20 covariates. These numbers are well within the number 
of covariates often adjusted for in traditional observational research. With techniques like large-scale 
propensity score adjustment, it takes 8000 subjects to reach reasonable acceptance rates. 
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A further challenge arises with the growth of networks of observational databases and federated analyses 
across those databases. Combining the effect estimates from the databases using meta-analysis can result 
in more precise estimates. The increasing precision of the effect estimates should be matched with 
increased precision of diagnostics. That is, if there is systematic imbalance across the databases, then the 
level of imbalance will have a proportionately larger effect compared to the increased precision of the 
effect estimate. 
 
The covariates that are tested for imbalance are usually the covariates adjusted for. Most commonly, 
researchers select a small number of covariates, say 4 to 20, that are suspected to be potential confounders 
and adjust for them. The process is unreliable, as illustrated by a sample of hypertension studies [20-24], 
each of which claims to have adequately addressed confounding but for which there is only moderate 
overlap of the confounders across studies. An alternative, which has empirical backing, is to adjust for all 
observed covariates—potentially tens of thousands—that are not eliminated as potential mediators, 
colliders, or instruments [17,18]. In comparisons, adjusting for all covariates has outperformed manual 
confounder selection [18,25,26] and empirical confounder selection [17]. 
 
Even if one chooses to adjust for a small number of covariates, the question remains how many covariates 
to check for balance. If the problem of false rejections of the study can be addressed, then it would seem 
that the covariates include information about the study even if they are not adjusted for. Rather than 
taking a head-in-the-sand approach of ignoring such imbalance, it should be measured and explained. If 
the covariates are not plausible instruments, then they should be adjusted for or the study should be 
discarded. 
 
In this paper, we propose a simple approach to address false rejection using a statistical test for exceeding 
the 0.1 threshold and with Bonferroni correction where appropriate. We do this at both the single database 
level and the network level. The approach is easy to understand and easy to implement. We recognize that 
testing for the presence of any statistically significant imbalance among the covariates is appropriately 
frowned upon [11,27], but we believe that testing for exceeding the 0.1 threshold is justified and argue the 
case further in the discussion. We study the operating characteristics of this diagnostic procedure in 
simulation and on real-world data, and we report on the implications for single database studies and for 
meta-analyses. 
 
METHODS 
 
Simulation 
 
Our goal for the simulation was to create a data set that would mimic the balance characteristics of a data 
set whose treatments groups had been completely or imperfectly adjusted for confounding, for example 
using 1-to-1 matching based on a propensity score. We used a binary treatment and a binary outcome, 
with a set of binary covariates that could include a confounder or other correlations that were not 
sufficiently balanced by the adjustment procedure. 
 
For the base case, we varied database sample size, effect size, and degree of confounding, holding 
outcome prevalence, covariate prevalence, and aggregate sample size constant and using homogeneous 
confounding across databases. We used an aggregate sample size of 20,000 subjects, which were 
apportioned among databases with 4000, 2000, 1000, 500, and 250 subjects, producing 5, 10, 20, 40, and 
80 databases, respectively. Each experiment was carried out 200 times to estimate error rates. Each 
subject, i, was defined as follows: 
 ��,�~ ����!
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where the xi,j were the non-treatment covariates for subject i and covariate j, ti was the treatment, and yi 
was the outcome. Index j varied from 1 to 1000 with xi,1 being a potential confounder, with xi,2 … xi,10 
being causally linked to the outcome but not the treatment, and with xi,11 … xi,1000 not being linked to 
treatment or outcome. Constant ce determined the treatment effect, ct was the link from the confounder xi,1 
to the treatment ti, cy was the link from the confounder xi,1 to the outcome yi and cx was the link from 
covariates xi,2 to xi,10 to the outcome yi. We used 1000 covariates to simulate the probability of detecting 
imbalance among covariates by chance in an analysis with large-scale covariate adjustment such as is 
used in large-scale propensity score adjustment [17,18] or high-dimensional propensity score adjustment 
[16]. For the base case, ce varied from 0 to 0.1, ct varied from 0 to 0.3, cy was held at 0.1, and cx was held 
at 0.1. The parameters were chosen such that they best illustrated the range of performance, for example 
from an effect that was undetectable to an effect that was detectable by all studied approaches, and they 
were iterated upon to find weaknesses in the approaches. When ce and ct both equaled zero, there was no 
systematic source of imbalance between the two groups and any detected imbalance was due to chance. 
 
To estimate an effect size, we used function glm (family = binomial) in R to carry out a simple logistic 
regression using ti to predict yi, ignoring xi,j, as one might do if one assumes a previous adjustment 
procedure succeeded in achieving balance. We studied our ability to detect imbalance among covariates 
in the treated versus untreated group, correlating those results with measured type 1 error and power 
based on the true effect ce and the effect estimates and their variances from the model. 
 
To quantify imbalance, we used the standardized mean difference (SMD), smdj, for covariates xi,j, 
defining it as follows: 
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where sdj is the pooled sample standard deviation for covariates xi,j and varsmdj is the variance of smdj. 
We use a large-sample estimate of the variance instead of its empirical distribution to ensure that the 
resulting procedure is simple enough for actual adoption. 
 
We estimated the type 1 error rate as the proportion of 200 study iterations where the effect coefficient 
estimate differed statistically significantly from 0 when ce=0. We estimated the power as the proportion of 
the 200 iterations where the effect coefficient estimate differed statistically significantly from 0 when 
ce≠0. 
 
Given these definitions, we studied alternative decision rules to determine whether to reject a network 
study based on covariate imbalance, and we compared their type 1 error rate and power after rejecting the 
imbalanced studies and assigning them a status of not statistically significant regardless of the effect 
estimate. Our decision rules operated at two levels, at the single database level and at the network level, 
and there were three types of rules: accept all studies (i.e., ignore imbalance), reject studies with any 
smdj≥0.1 (following Austin [3]), and reject studies where the smdj is statistically significantly greater than 
0.1 using varsmdj and a Bonferroni correction for the number of covariates. For the network study, we 
employed a random effects meta-analysis using the R function rma both to determine the overall effect 
size and to determine the overall standardized mean difference for each covariate. The result was nine 
total rules; we use the shorthand of “all” for accepting all studies, “nominal” for checking for any 
smdj≥0.1, and “signif” for checking for any smdj being statistically significantly greater than 0.1 after 
Bonferroni correction: 
 

AllOnAll (all network, all database): Accept each database regardless of imbalance, and then accept 
the network meta-analysis regardless of overall imbalance 

AllOnNominal (all network, nominal database): Reject databases with any smdj≥0.1, and then accept 
the network meta-analysis of the remaining databases regardless of overall imbalance 

AllOnSignif (all network, statistical database): Reject databases with any smdj being statistically 
significantly greater than 0.1 after Bonferroni correction for the number of hypotheses, and then 
accept the network meta-analysis of the remaining databases regardless of overall imbalance 

NominalOnAll (nominal network, all database): Accept each database regardless of imbalance, and 
then reject the network meta-analysis if the meta-analytic overall imbalance was greater than or 
equal to 0.1 for any covariate 

NominalOnNominal (nominal network, nominal database): Reject databases with any smdj≥0.1, and 
then reject the network meta-analysis of the remaining databases if the meta-analytic overall 
imbalance was greater than or equal to 0.1 for any covariate 

NominalOnSignif (nominal network, statistical database): Reject databases with any smdj being 
statistically significantly greater than 0.1 after Bonferroni correction for the number of 
hypotheses, and then reject the network meta-analysis of the remaining databases if the meta-
analytic overall imbalance was greater than or equal to 0.1 for any covariate 

SignifOnAll (statistical network, all database): Accept each database regardless of imbalance, and 
then reject the network meta-analysis if the meta-analytic overall imbalance was statistically 
significantly greater than 0.1 for any covariate after Bonferroni correction for the number of 
covariates 

SignifOnNominal (statistical network, nominal database): Reject databases with any smdj≥0.1, and 
then reject the network meta-analysis of the remaining databases if the meta-analytic overall 
imbalance was statistically significantly greater than 0.1 for any covariate after Bonferroni 
correction for the number of covariates 
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SignifOnSignif (statistical network, statistical database): Reject databases with any smdj being 
statistically significantly greater than 0.1 after Bonferroni correction for the number of 
hypotheses, and then reject the network meta-analysis of the remaining databases if the meta-
analytic overall imbalance was statistically significantly greater than 0.1 for any covariate after 
Bonferroni correction for the number of covariates 

 
Of note, rule AllOnAll ignores imbalance and accepts all studies regardless of the detection of a potential 
for confounding. Rules NominalOnAll and SigniOnAll ignore database-level imbalance and rely solely 
on a network-level detection. Rules AllOnNominal and AllOnSignif ignore any network-level imbalance 
but exploit database-level detection. In general, database-level imbalance detection is expected to be 
severely affected by sample size, either missing imbalance or declaring false-positive imbalance on small 
databases. Network-level imbalance is expected to be more likely to detect imbalance that is shared 
among databases but may miss an aberrant database. 
 
We carried out several simulation experiments in addition to the base case. We reran the study under the 
conditions of low covariate prevalence (10% instead of 50%), low outcome prevalence (1% instead of 
25%), heterogeneous confounding (varying ct from –0.3 to 0.3 for each database instead of holding it 
constant), and fewer databases (capped at 5 databases instead of holding the aggregate total constant). 
 
Real-World Data 
 
We exploited a data set and protocol used in two previous studies to illustrate the effect of choice of 
covariate balance detection on real-world covariates and confounding. The Observational Health Data 
Sciences and Informatics (OHDSI) [28,29] LEGEND hypertension [30] and type-2 diabetes studies [31] 
comprehensively evaluated the comparative effects of all pharmaceutical treatments for their respective 
disease areas. Here we select two comparisons from each, including the negative control outcomes used 
in these studies. 
 
We used three databases shown in Table 1. Each database uses OHDSI’s Observational Medical Outcome 
Partnership (OMOP) common data model [32] populated with patient characteristics, health care visits, 
diseases, medications, procedures, and, optionally, other data types such as laboratory tests. Data 
elements were translated to standard terminologies [33,34] such as Systematized Nomenclature of 
Medicine (diseases, procedures), RxNorm (medications), and Logical Observation Identifiers Names and 
Codes (laboratory tests). 
 
The gold standard was the collection of 110 real negative controls used in the original studies as well as 
synthetic positive controls generated from them. Each negative control contained a target drug, a 
comparator drug, and an outcome that was determined through review of the literature, product labels, 
spontaneous reports, and clinical experts not to be causally associated with either drug [35]. Therefore, 
the hazard ratio of the appearance of the outcome between the two drugs should be 1, indicating no 
difference. Synthetic positive controls were generated from the negative controls by fitting an L1-
regularized Poisson regression model [36] on presence of the outcome based on all pre-treatment 
covariates and then using that model to insert additional simulated events into the data set to achieve 
hazard ratios of 1.5, 2, and 4. More details are available [30,31]. 
 
For each of the three large databases, we created several sets of smaller databases to illustrate the effect of 
a network study across databases with small sample sizes. We kept the total number of cases constant at 
20,000: 5 databases with 4000 cases each, 10 databases with 2000 cases each, 20 databases with 1000 
cases each, 40 databases with 500 cases each, and 80 databases with 250 cases each. For each of these 
sets, we calculated large-scale propensity scores [18] for four treatment comparisons—lisinopril versus 
hydrochlorothiazide, lisinopril versus metoprolol, sitagliptin versus liraglutide, and sitagliptin versus 
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glimepiride—on 98,681 covariates found in the three databases. Only pretreatment variables were used to 
minimize the probability of mediators or colliders, suspected instruments were removed, and lack of 
strong instruments was confirmed by measuring equipoise. We calculated propensity scores two ways: on 
each small database and on a pooled sample of all 20,000 cases. We used three methods to apply the 
propensity score to a causal analysis: no adjustment (crude), 1-to-1 matching, and stratification. We then 
used a Cox proportionate hazards model to estimate the hazard ratio for each hypothesis, calculated a 
confidence interval, and tested for significance based the confidence interval excluding no effect (hazard 
ratio of 1). 
 
The result was a set of analyses characterized by which of three large databases it came from, by the four 
hypotheses, by the sample size of the generated database (250, 500, 1000, 2000, 4000), by the underlying 
hazard ratio (1, 1.5, 2, 24), and by the analysis method (unadjusted=crude, matched on the database-level 
propensity score, stratified on the database-level propensity score, matched on the pooled propensity 
score, stratified on the pooled propensity score). Each analysis had an effect estimate and a standardized 
mean difference for every covariate. 
 
We then further carried out a meta-analysis as described in the Simulation methods section across the 80, 
40, 20, 10, or 5 generated data sets (for 250, 500, 1000, 2000, and 4000 sample sizes, respectively) getting 
meta-analytic estimates for the effect and all the covariate SMDs. We applied the nine covariate balance 
rules described above in the Simulation methods section. We calculated the proportion of studies that 
passed the covariate balance rule and report the type 1 error rate and power for each rule for each sample 
size and for two groups of analyses: unadjusted=crude versus all propensity-adjusted methods. The 
unadjusted analyses should display greater confounding than the adjusted ones. 
 
RESULTS 
 
Simulation 
 
Figure 1 shows the performance of the three types of rules at the database level, with type 1 error rate in 
the first column of graphs (no true effect with ce=0) and power in the rest of the columns (increasing 
effect with ce>0). The first row, labeled All, ignores imbalance. It has good power but increasing type 1 
error with increasing confounding, reaching 1 for high confounding. The second row, labeled Nominal, 
uses the standard practice of rejecting studies where at least one standardized mean difference equals or 
exceeds 0.1. This rule rejects all studies with fewer than 4000 subjects even when confounding is zero 
due to chance imbalance, producing little power. The third row, labeled Signif, rejects studies where at 
least one standardized mean difference is statistically significantly great than 0.1 after Bonferroni 
correction. Type 1 error rate is relatively controlled with an average of 0.054, with the highest rate of 0.14 
at intermediate levels of confounding (ct=–0.06), where the confounding did not trigger a rejection but 
caused a false positive result. Power rises with effect size, reaching near one except where confounding is 
most strong, leading to rejection of those highly confounded studies. 
 
Figure 2 shows the performance of the nine rules defined in Methods for the base case of the network 
study. The first row, AllOnAll, illustrates that completely ignoring imbalance produces increasingly poor 
type 1 error rate with increasing confounding, getting to 1 for the highest confounding. The second row, 
AllOnNominal, illustrates that using the nominal rule of checking for standardized mean difference 
greater than or equal to 0.1 at the database level leads to rejecting all databases smaller than 4000 even 
when there is no true imbalance, resulting in a power of zero. For the same reason, rules 
NominalOnNominal and SignifOnNominal, which use the nominal test at the database level, fail with low 
power. The third row, rule AllOnSignif, illustrates that checking for statistically significant imbalance 
only at the database level leads to low type 1 error rate when there is no confounding and when there is 
high confounding (when it can be detected) but high type 1 error rate near 1 with intermediate 
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confounding (ct=0.1 or –0.1) that is strong enough to cause a false positive result but not strong enough to 
trigger the rule to drop the database. The rows for rules NominalOnAll and NominalOnSignif illustrate 
that checking for nominally reaching the 0.1 threshold on the meta-analytic standardized mean difference 
estimates produces low type 1 error and high power if the confounding is low. The rows for rules 
SignifOnAll and SignifOnSignif illustrate that checking whether the meta-analytic standardized mean 
difference estimate is statistically significantly greater than or equal to 0.1 produces a generally 
reasonable type 1 error rate and high power for low confounding. We were able to find a combination that 
produced a high type 1 error rate of 0.295 when ct=0.03, representing an intermediate level of 
confounding.  
 
Thus, four rules—NominalOnAll, NominalOnSignif, SignifOnAll, and SignifOnSignif—were viable 
according to the simulation, with the latter two showing some higher type 1 error. The four rules 
differentiated when the number of databases was limited to five (Figure S1). Using a nominal test for the 
meta-analytic standardized mean difference reaching the 0.1 threshold (rules NominalOnAll and 
NominalOnSignif) resulted in zero power for databases smaller than 1000 because chance imbalance 
always disqualified the study even when there was no confounding. Testing for statistical significance 
(rules SignifOnAll and SignifOnSignif) avoided discarding non-confounded small studies. In other words, 
the nominal threshold test of the meta-analytic threshold only worked when the network was large 
enough, but the statistical test behaved gracefully with smaller network sizes. 
 
We also performed a number of further sensitivity analyses, shown in the Supplement. When outcome 
prevalence is low (Figure S2), the rules perform similarly to each other, and they all lose some power 
compared to the base case, where outcome prevalence is higher. When covariate prevalence is low 
(Figure S3), the four rules perform similarly to the base case. When confounding is heterogeneous (Figure 
S4), the four rules produce similar results; rules NominalOnAll and NominalOnSignif have less power, 
but because the study is confounded, greater power is not the goal. We tried the Signif rules without the 
Bonferroni correction (Figure S5); the type 1 error rate remained high at 0.260 for the ct=0.03 case, and it 
reduced power near 0 in the smallest studies. 
 
We studied the effect of using fewer covariates. When the covariate count is 20 (Figure S6), we see 
similar results to the base case except that the curves are shifted to the left, with the same issues occurring 
across the nine rules, but with one quarter the sample size.  
 
To provide context for the type 1 error rates at small sample sizes, we reproduced a more typical study 
with sample size increased to 20,000 and keeping the covariates at 20 (Figure S7). We show that type 1 
error rates can get over 0.57 for all nine rules if we select confounding carefully. We also note the 
similarly of the results for the Nominal rules versus the Signif rules with this large sample size (Figures 
S7 and S16). 
 
Real-World Data 
 
Figure 3 shows the type 1 error (RR=1) and power (RR>1) for all nine rules on the real-world data for 
different sample sizes and levels of adjustment (adjusted versus unadjusted, likely reflecting lower and 
higher residual confounding). When covariate imbalance was ignored (rule AllOnAll), the type 1 error 
rate was high at 0.09 for the unadjusted study (no covariate adjustment and therefore presumably higher 
confounding) when sample size was 250. As was observed in the simulation, when covariate balance was 
checked at the database level using a threshold of the standardized mean difference nominally exceeding 
0.1 (rules AllOnNominal, NominalOnNominal, and SignifOnNominal), all studies were rejected resulting 
in no power. Checking at the network level for the meta-analytic standardized mean difference nominally 
exceeding 0.1 (rules NominalOnAll, NominalOnNomimal, and NominalOnSignif) also resulted in 
rejecting most studies with reduced power. This left only rules that checked for statistically significant 
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covariate imbalance. Of note, for rule AllOnSignif, which only checks for covariate imbalance at the 
database level, the type 1 error rate was high at 0.07 when sample size was 250 with the crude analysis, 
reflecting the consequence of ignoring network-level estimates of standardized mean difference. Rules 
SignifOnAll and SignifOnSignif, which test for statistically significant imbalance at the network level, 
both produced type 1 error less than 0.05 and showed power similar to no checking (rule AllOnAll) in the 
adjusted studies (when confounding was likely to be low) and showed low power due to appropriately 
rejecting unadjusted studies (when confounding is likely to be high). 
 
DISCUSSION 
 
Our study illustrates two principles and identifies an algorithm that appears to best address the tradeoff 
between type 1 error and power in the simulation and real-world data. First, as sample size decreases, 
using a nominal test of imbalance such as described by Austin [3] will result in near-certain rejection of 
the study even with no confounding due to chance imbalance, and this effect occurs with few covariates 
as well as many covariates. Using a statistical test of imbalance exceeding a threshold like 0.1 will 
maintain power without substantially raising the type 1 error rate. When doing a study with small sample 
sizes, it may be hard to detect small-to-moderate confounding, but our results illustrate that the small 
study’s wide confidence intervals will avert a high type 1 error rate. That is, it takes significant 
confounding to cause high type 1 error rate. Second, when doing a network study, it is important to carry 
out a meta-analysis not just of the effect estimate but also of the diagnostics such as standardized mean 
difference. The meta-analysis of the effect estimate may potentially produce a more precise effect 
estimate and a narrow confidence interval so that small-to-moderate confounding can yield too many false 
positive results. The meta-analysis of the standardized mean differences, however, permits the detection 
of lower levels of confounding despite the sample sizes being individually small. 
 
Best overall performance appeared to be achieved by testing for statistically significant imbalance defined 
as standardized mean difference over 0.1 and using a Bonferroni correction across covariates. For 
network analyses, rule SignifOnSignif, which tested for statistically significant imbalance at both the 
single database level and across the database network using a meta-analysis of standardized mean 
differences, worked best. It produced power at all studied sample sizes, and its power was generally not 
too much less than ignoring imbalance, yet it achieved substantially lower type 1 error rates. In the 
simulation, we used iterative parameter testing to find a combination that produced a type 1 error rate 
approaching 0.3, but we emphasize that we could achieve such high error rates even with standard 
practice. For example, even in a much larger study with a sample size of 20,000, using only 20 covariates, 
setting ct to 0.02, cy to 0.2, and ce to 0, and using a nominal threshold of 0.1, the type 1 error rate was 
0.57. Given any threshold, it is possible to design a simulation that thwarts it. The most important 
question is what happens with real-world data, and in fact, rule SignifOnSignif produced low type 1 error 
rate. Rule SignifOnSignif had other good properties. If the confounding was heterogeneous, doing the 
standardized mean difference test at both levels worked best: drop the databases that fail at the individual 
level and do a meta-analysis on the rest. As the number of databases varied from 1 to 5 up to 80, rule 
SignifOnSignif produced a stable output, and it worked whether the number of covariates was 20, 1000, 
or 98,681. When covariate prevalence or outcome prevalence was low, the results were similar. 
 
Rules that appeared to work on simulation failed on the real-world data. For example, rule 
NominalOnAll, which tested for any meta-analytic standardized mean difference to be nominally over 
0.1, had too-low power in real-world data compared to testing for statistical significance: even with 4000 
cases in a study with low confounding, most studies were rejected, rendering the rule ineffective for small 
studies. It also failed in the simulation when the number of databases in the network was only 5. The two 
techniques that most clearly failed represent standard practice: doing a nominal test for imbalance at the 
database level (AllOnNominal) rejected all databases regardless of confounding as sample size fell; and 
doing no test for imbalance (AllOnAll) led to very poor type 1 error as confounding rose. 
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Applying meta-analysis to study diagnostics will clearly be difficult given that very few studies share the 
details of their balance results (although it has been suggested [37]). The approach is still relevant to 
distributed networks that use meta-analysis to combine their results; sharing of study diagnostics can be 
incorporated into the study protocol [31]. It is important to at least recognize this limitation of meta-
analysis on observational research without study diagnostics. 
 
Showing power for studies in which confounding is non-zero can be seen as misguided. Should not the 
metric instead be the ability to detect confounded studies? We believe that power is the right metric. As 
Austin [3] showed, the goal is not to detect increasingly minute imbalance, but to detect imbalance that 
might reflect confounding that matters. As sample size falls, confidence intervals widen, and it takes more 
confounding to alter the result appreciably. If important confounding is slipping through the imbalance 
test, then that will be reflected in the type 1 error rate. If the type 1 error rate stays near its nominal value 
(say 0.05), then we argue that power reflects acceptance of studies that while they might be confounded to 
some degree, that confounding is insufficient to cause a frequent false result. All observational studies in 
fields like medicine have some small degree of confounding, so it is important that the goal be recognized 
as achieving best power given a nominal type 1 error rate, not eliminating all studies. 
 
This study potentially informs other observational research as well. The current custom is to check 
balance only on the covariates suspected to be confounders and adjusted for using propensity scores, 
ignoring potentially useful information about other covariates. Given our results, it may be more 
informative to incorporate all available covariate information. If a covariate is unbalanced, that should be 
explained as an instrument if domain knowledge is available or the study should be suspected to be 
biased. Our work demonstrates that it is possible to test for imbalance without triggering too many false 
positives and also without missing confounding that could substantially affect the results. 
 
As authors have pointed out [3,11,27,38], using a statistical test to detect the presence of imbalance 
(difference from 0) performs poorly and does not achieve the proper goal, yet we believe that this test for 
exceeding a threshold (exceed 0.1) is in fact useful. Imai et al. [27] argue three points: that a statistical test 
is dependent on sample size yet the actual imbalance is not, that any threshold like a p-value is arbitrary, 
and that the target of analysis is the sample itself and not some underlying population. On the first, we too 
are dependent on sample size but we believe that that is appropriate. As the size of the sample shrinks, the 
effect estimate will become less precise with a larger confidence interval and any given level of 
confounding will have a proportionately smaller influence on the conclusion of the study. Therefore, the 
threshold for imbalance ought to become less stringent as sample size falls. On the second, we agree that 
a threshold is arbitrary at first, but the observational research field including most of these authors have 
come to relative agreement on a 0.1 constant threshold [3-15] despite the fact that no threshold can 
guarantee immunity from important bias. The appropriateness of a threshold is decided slowly over time 
as real study results are compared to baseline knowledge and validated in later randomized experiments. 
Our use of statistical comparison to 0.1 is no more arbitrary than current practice. On the third, we 
acknowledge that we are concerned with the current sample, but we use the statistical test to effectively 
adjust the level of the threshold to the sample size, in effect accounting for the size of the effect estimate 
sample size. Our test may be better seen as a heuristic that uses a threshold whose level varies with 
sample size. 
 
Our use of a Bonferroni correction may be questioned, but we argue it is necessary and appropriate. With 
increasing numbers of independent covariates, the likelihood of chance imbalance will rise, so as we have 
demonstrated (Figure S5), correction for multiple hypotheses is needed to avoid rejecting too many 
studies. One may question why existing confounders should be allowed more imbalance just by adding 
new independent covariates. First, and most important, we include many covariates because small sets of 
manually chosen or empirically selected confounders are likely missing confounding (both directly and 
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indirectly measured [18]), which is likely why large-scale propensity adjustment appears to perform better 
than other methods [17,18,25,26]. That is, we agree that domain knowledge is effective for identifying 
important confounders but we believe it has little ability to rule out other confounders. Our further 
simulations (see Supplement section III) demonstrate that if confounders are distributed among the 
covariates, then adding covariates actually increases our ability to detect confounding despite the 
Bonferroni correction. We also point out that for the range of standard errors of standardized mean 
difference that we saw in the real-world data (0.044) adding a Bonferroni correction for 100,000 
covariates when testing for exceeding at threshold of 0.1 is still stricter than not using Bonferroni 
correction but using a threshold of 0.25, which is a previously accepted alternative threshold [11,12]. In 
the end, we believe that the question of how many covariates to include is an empirical one, balancing the 
benefit of covering more confounders with the risk of including inappropriate variables, and our 
experience so far is that more has been better [17,18,25,26], and this experiment shows that on real-world 
data, chance imbalance can be addressed by rule SignifOnSignif even with 98,861 covariates. 
Nevertheless, whether a researcher selects 20 covariates or 100,000 covariates, the results of this 
experiment remain relevant. 
 
One can also argue whether observational studies with small sample sizes can be trusted. They are clearly 
important because even in large databases, uncommon treatments can result in small cohorts. As we 
demonstrate in our experiment, such studies can achieve type 1 error rates and power comparable to 
larger studies. With modern regularized regression [36], even propensity models with 100,000 covariates 
can be stably estimated with sample sizes down to 250 [39]. Therefore, we see no need to exclude them. 
 
One limitation of our design is that type 1 error rate and power were estimated by counting rejected 
studies as if their effect estimates were not distinguishable from the null hypothesis. One can recover the 
type 1 error rate and power within only the non-rejected databases by dividing the type 1 error or power 
by the proportion valid (Figures S8-S17). The relative effectiveness of the rules remains the same, 
however. 
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Table 1. Description and Characteristics of Administrative Claims Data Sources 
 

Data Source Claims Type Population Enrolled 
Merative Medicare 

Supplemental 
Database (MDCR) 

Adjudicated health insurance claims of retirees 
with primary or Medicare supplemental coverage 
through privately insured fee-for-service, point-

of-service or capitated health plans. 

10M 
starting 2000 

Commercially insured, 
65+ years 

Merative MarketScan 
Multi-State Medicaid 
Database (MDCD) 

Adjudicated health insurance claims for Medicaid 
enrollees from multiple states and includes 

hospital discharge diagnoses, outpatient diagnoses 
and procedures, and outpatient pharmacy claims. 

26M 
starting 2006 

Medicaid enrollees, 
racially diverse 

Optum® de-identified 
Electronic Health 
Record data set 
(Optum® EHR) 

Clinical information, prescriptions, lab results, 
vital signs, body measurements, diagnoses and 
procedures derived from clinical notes using 

natural language processing. 

93M 
starting 2006 
US, general 
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Figure 1. Rule performance at the database level on simulation. The proportion of study iterations that 
were not rejected by the rule and that had effect coefficients that were statistically significantly different 
from zero is plotted against database sample size. Colored lines represent different levels of confounding 
with ct from –0.3 to 0.3, and graphs from left to right show different values for effect parameter ce from 0 
to 0.1. The rows represent the three types of rules applied only to a single database under study: All 
ignores imbalance, Nominal tests for any covariate’s standardized mean difference reaching or exceeding 
0.1, and Signif tests for any covariate’s standardized mean difference statistically significantly reaching 
or exceeding 0.1. The first column, with ce=0, represents the type 1 error rate (i.e., higher proportion 
positive is undesired because it means higher type 1 error rate), and the other columns, with ce>0, 
represent the power with increasing effect size (i.e., higher proportion positive is desired because it means 
more power in detecting an effect). All has unacceptably high type 1 error with high confounding, 
Nominal has unacceptably low power, and Signif has moderate type 1 error rate and high power when 
confounding is low, and when confounding is high, more studies ought to be rejected so low power is 
expected. (Graph points are jittered to reveal overlapping colors but lines are drawn true.) 
 

 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.23.24306230doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.23.24306230
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Rule performance at the network level on simulation. Graphs show the proportion of study 
iterations that were not rejected by the rule and that had effect coefficients that were statistically 
significantly different from zero plotted against database sample size. Colored lines represent different 
levels of confounding ct from –0.3 to 0.3, and graphs from left to right show different values for effect 
parameter ce from 0 to 0.1. The nine rows represent the nine rules listed in the Methods section. The first 
column, where ce=0, shows the type 1 error rate, and the other columns, where ce>0, show the power with 
increasing effect size. See text for an explanation of results. (Graph points are jittered to reveal 
overlapping colors but lines are drawn true.) 
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Figure 3. Rule performance at the network level on real-world data. Graphs show the proportion of 
study iterations that were not rejected by the rule and that had effect coefficients that were statistically 
significantly different from zero plotted against database sample size. Colored lines represent adjusted 
and unadjusted analyses, reflecting lower and higher residual confounding. Graphs from left to right show 
different true relative risks (RR). The nine rows represent the nine rules listed in the Methods section. The 
first column, where RR=1, shows the type 1 error rate, and the other columns, where RR>1, show the 
power with increasing effect size. See text for an explanation of results. (Graph points are jittered to 
reveal overlapping colors but lines are drawn true.) 
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