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Abstract 

Chemotherapy-related cogni5ve impairment (CRCI) remains poorly understood in terms 

of the mechanisms of cogni5ve decline. Neural hyperac5vity has been reported on average in 

cancer survivors, but it is unclear which pa5ents demonstrate this neurophenotype, limi5ng 

precision medicine in this popula5on.  We evaluated a retrospec5ve sample of 80 breast cancer 

survivors and 80 non-cancer controls, age 35-73, for which we had previously iden5fied and 

validated three data-driven, biological subgroups (biotypes) of CRCI.  We measured neural 

ac5vity using the z-normalized percent amplitude of fluctua5on from res5ng state func5onal 

magne5c resonance imaging (MRI). We tested established, quan5ta5ve criteria to determine if 

hyperac5vity can accurately be considered compensatory.  We also calculated brain age gap by 

applying a previously validated algorithm to anatomic MRI.  We found that neural ac5vity differed 

across the three CRCI biotypes and controls (F = 13.5, p < 0.001), with Biotype 2 demonstra5ng 

significant hyperac5vity compared to the other groups (p < 0.004, corrected), primarily in 

prefrontal regions. Alterna5vely, Biotypes 1 and 3 demonstrated significant hypoac5vity (p < 0.02, 

corrected). Hyperac5vity in Biotype 2 met several of the criteria to be considered compensatory. 

However, we also found a posi5ve rela5onship between neural ac5vity and brain age gap in these 

pa5ents (r = 0.45, p = 0.042). Our results indicated that neural hyperac5vity is specific to a 

subgroup of breast cancer survivors and, while it seems to support preserved cogni5ve func5on, 

it could also increase the risk of accelerated brain aging.  These findings could inform future 

neuromodulatory interven5ons with respect to the risks and benefits of up or downregula5on of 

neural ac5vity. 
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Introduc5on 

Chemotherapy-related cogni5ve impairment (CRCI) is experienced by many pa5ents 

during and afer cancer treatment. Despite affec5ng up to 85% of cancer survivors (1), CRCI is s5ll 

poorly understood. Clinical and preclinical research from our group and others suggests that 

breast cancer chemotherapy upregulates neural ac5vity (2-7). Although hypoac5vity compared 

to non-cancer controls has also been observed (8, 9), hyperac5vity is more common, especially 

longitudinally, and is correlated with subjec5ve cogni5ve func5on (6, 7, 10, 11). Hyperac5vity is 

not limited to breast cancer. For example, Liu et al. found that colorectal cancer pa5ents treated 

with chemotherapy had greater ac5va5on in several brain regions compared to healthy controls. 

However, it is unknown which pa5ents show neural hyperac5vity as most observa5ons have been 

made by comparing mean ac5vity between pa5ents and controls. It is possible that a specific 

subgroup of pa5ents demonstrate hyperac5vity, contribu5ng to the heterogeneity in findings 

across imaging studies.  

To iden5fy CRCI subgroups, we pioneered the applica5on of biotyping to this popula5on 

(12-14). Specifically, we developed an AI-based algorithm for determining data-driven, latent 

pakerns of brain abnormality (biotypes) in breast cancer survivors. We then examined cogni5ve 

phenotypes associated with each biotype (14). As we previously described, Biotype 1 

demonstrated impaired cogni5ve func5on, Biotype 2 had rela5vely preserved cogni5ve func5on, 

and Biotype 3 showed moderately impaired cogni5ve func5on. Impairment was defined as 

differing significantly from non-cancer controls, although biotypes also differed significantly from 

each other. We then cross-validated our biotype algorithm in an independent sample and 

showed that biotypes had unique demographic, clinical, psychological, and gene5c 
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characteris5cs. In contrast, tradi5onal, symptom-based defini5ons of cogni5ve impairment 

showed no significant differences in these characteris5cs (12, 14). In the present study, we 

hypothesized that Biotype 2 would uniquely demonstrate neural hyperac5vity given their 

rela5vely preserved cogni5ve func5on.  

The basis for this hypothesis stems from research sugges5ng that neural hyperac5vity can 

be compensatory, or a reorganiza5on of brain func5on to counteract decline (15, 16). In CRCI 

studies, hyperac5vity is ofen interpreted as compensatory without any evidence to support this 

claim (5, 17-20). Cabeza and Dennis (21) proposed four criteria that researchers could use to 

determine if brain ac5vity can be akributed to compensa5on (Figure 1). The first two criteria 

describe “akempted compensa5on”, indica5ng that hyperac5vity has an inverted U-shaped 

rela5onship with brain decline, task demands, and age. Criterion A indicates that there is an 

ini5al increase in brain ac5vity related to brain decline, un5l underlying brain structure resources 

become so depleted that brain ac5vity then begins to decline. Criterion B indicates that brain 

ac5vity increases when a task demands more cogni5ve processing than an individual has 

available, un5l brain resources become depleted and again, we then see a decline in brain 

ac5vity. Cabeza and Dennis (21) suggest that age affects this rela5onship; reaching the threshold 

where resources become depleted occurs earlier in older adults. The remaining two criteria 

describe “successful compensa5on”, requiring a posi5ve correla5on between hyperac5vity and 

cogni5ve performance (criterion C) and a change in cogni5ve performance with altera5on of 

hyperac5ve regions (criterion D). Criterion D suggests that if we manipulate a hyperac5ve region 

(by either disrup5ng it or enhancing it), we should see a coordinated decline or improvement of 

the associated compensatory cogni5ve func5on (21).  
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Hyperac5vity may explain the well-known and ofen controversial discrepancy between 

subjec5ve and objec5ve cogni5ve func5on in cancer survivors (13). If hyperac5vity reflects neural 

compensa5on, it could mask the underlying cogni5ve deficit (8). However, pa5ent awareness of 

the addi5onal neural effort required to maintain performance might be reflected in low self-

ra5ngs of cogni5ve func5on compared to normal or near-normal objec5ve cogni5ve 

performance. Therefore, determining if hyperac5vity is compensatory would significantly help 

clarify the inconsistency between objec5ve and subjec5ve CRCI (22, 23) that has frequently 

resulted in dismissal of pa5ent reports. Importantly, compensa5on-related theories suggest 

methods for enhancing compensa5on to improve cogni5on (15, 16). Iden5fying the subgroup of 

pa5ents who demonstrate hyperac5vity may also yield insights regarding modifiable factors that 

could be applied to other subgroups to help improve cogni5ve func5on.  

However, compensatory hyperac5vity may come at the cost of faster spread of age-

related and other neuropathologies making it even more important to iden5fy precisely which 

pa5ents demonstrate this biotype. Hyperac5vity may increase oxida5ve stress and the transfer of 

proteins such as tau and α-synuclein between neurons and subsequently lead to greater 

accumula5on and aggrega5on (24, 25). With gliomas, hyperac5vity and increased func5onal 

connec5vity may increase the spread of glioma cells and impact pa5ent survival (26). One type of 

neuropathology ofen studied in rela5on to CRCI is accelerated brain aging (27). Brain age is an 

AI-derived neuroimaging measure of brain health which when compared to chronological age 

yields the Brain Age Gap (BAG) (28). In our previous studies, we found that while all biotypes had 

higher brain age than noncancer controls, Biotype 2 (those with the best cogni5ve func5on) had 
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lower brain age compared to the other biotypes (14, 29). However, it is unknown if neural ac5vity 

and BAG are related.  

To beker understand hyperac5vity, compensa5on, and brain aging, we examined neural 

ac5vity in our CRCI biotypes and tested the compensatory criteria proposed by Cabeza and 

Dennis (21). First, we hypothesized that magnitude of neural ac5vity differs across the CRCI 

biotypes and controls and is highest in Biotype 2. For compensatory criterion A, we hypothesized 

that hyperac5vity will be related to brain decline, specifically that there would be an inverted-U 

rela5onship between gray maker volume and neural ac5vity. For compensatory criterion B, we 

predicted there would be a significant nega5ve rela5onship between neural ac5vity and age, with 

older par5cipants showing less compensatory hyperac5vity. For compensatory criterion C, we 

hypothesized that neural ac5vity would be posi5vely correlated with cogni5ve performance. 

Given that this was a retrospec5ve study, tes5ng criterion D was not possible and would require a 

clinical trial that is beyond the scope of this study. Unrelated to compensatory criteria, we also 

predicted that higher neural ac5vity would be associated with increased neuropathology (as 

measured by BAG).  

 
Methods 
 

Par5cipants. We evaluated a retrospec5ve sample (data collected between 2008-2013) 

of 80 breast cancer survivors and 80 noncancer, female controls. The breast cancer survivors 

were age 35–73 years and had completed all primary treatments (surgery, radia5on, 

chemotherapy) excluding hormone blockade at least 6 months before study enrollment. See 

Table 1 for par5cipant demographics such as age, educa5on, 5me since treatment, etc. 

Chemotherapy regimens included doxorubicin/ cyclophosphamide (N = 3), 
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doxorubicin/cyclophosphamide/ paclitaxel (N = 52), doxorubicin/paclitaxel (N = 1), 

doxorubicin/cyclophosphamide/fluorouracil (N = 1), doxorubicin/ 

cyclophosphamide/methotrexate (N = 5), cyclophosphamide/ paclitaxel (N = 16), and 

fluorouracil/epirubicin/cyclophosphamide (N = 2). Par5cipants were free from disease and had 

no history of relapse or recurrence at the 5me of evalua5on. Par5cipants were excluded for 

neurologic, psychiatric, or medical condi5ons known to affect cogni5ve func5on. The studies 

involving humans were approved by Stanford University Ins5tu5onal Review Board. The studies 

were conducted in accordance with the local legisla5on and ins5tu5onal requirements. The 

par5cipants provided their wriken informed consent to par5cipate in this study. 

 Neuroimaging Data Acquisi5ons. Res5ng state fMRI data were collected using a T2* 

weighted gradient echo spiral pulse sequence: TR = 2000 ms, TE = 30 ms, flip angle = 80°, and 1 

interleave, FOV = 22 cm, matrix = 64 × 64, in-plane resolu5on = 3.4375 mm2, number of volumes 

= 216. A high-resolu5on, 3D IR-prepared FSPGR anatomic MRI scan was obtained: TR=8.5, TE= 

minimum, flip=15 degrees, TI=400 ms, BW=+ / − 31.25 kHz, FOV=22 cm, phase FOV=0.75, slice 

thickness=1.5 mm, 124 slices, 256 × 256 @ 1 NEX, scan 5me=4:33 min. Diffusion tensor imaging 

data were also collected during this scan session but are not reported here. All sequences were 

collected using a GE Signa HDx whole body scanner (GE Medical Systems, Milwaukee, WI).  

 Func5onal Brain Connec5vity. Res5ng state fMRI data were preprocessed using 

Sta5s5cal Parametric Mapping 12 (SPM12) (30) and CONN 21a (31) implemented in Matlab 

v2023b (Mathworks, Inc, Na5ck, MA). Briefly, this involved realignment, coregistra5on with the 

segmented anatomic volume, spa5al normaliza5on, ar5fact detec5on (global signal = 3.0 

standard devia5ons, mo5on = 1.0 mm, rota5on = 0.05 mm), band-pass filtering (0.008–0.09 Hz), 
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and correc5on of non-neuronal noise (32). Temporal correla5ons between all possible pairs of 

268 regions (33) were computed based on the corrected fMRI signal to create a 268x268 

func5onal connec5vity matrix for each par5cipant. Thus, the matrix describes the brain network, 

or connectome, comprised of nodes (regions) and edges (connec5ons).  

Biotypes. We previously developed a machine learning algorithm for determining data-

driven, latent pakerns of brain abnormality (biotypes) from func5onal brain connec5vity in this 

cohort. We then examined cogni5ve phenotypes associated with each biotype based on scores 

from six tests: Comprehensive Trail Making Tests 1 and 5, Delis-Kaplan Execu5ve Func5on System 

Leker Fluency test, Immediate and Delayed Recall from the Rey Auditory Verbal Learning Test, 

and Global Execu5ve Composite (GEC) of the Behavioral Ra5ng Inventory of Execu5ve Func5on 

Adult Version (14). Biotype 1 demonstrated impaired cogni5ve func5on on 6/6 tests, Biotype 2 

had rela5vely preserved cogni5ve func5on with impairment on 2/6 tests, and Biotype 3 showed 

moderately impaired cogni5ve func5on with impairment on 4/6 tests. Impairment was defined 

as differing significantly from non-cancer controls (p < 0.05, corrected for mul5ple comparisons), 

although biotypes also differed significantly from each other. We then cross-validated our biotype 

algorithm in an independent sample (12, 14). See Table 1 for demographic and clinical details of 

each Biotype. 

Neural Ac5vity. We measured neural ac5vity from res5ng state fMRI using the z-

transformed percent amplitude of fluctua5on (zPerAF) (34). zPerAF is a measure of percent signal 

change and is calculated for each region as the sum of the absolute values of the standard 

devia5on (z) normalized, mean centered signal intensi5es at each 5me point, divided by the total 

number of fMRI 5me points: 
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where 𝑋!  = signal intensity at the 𝑖%& 5me point, 𝑢 = mean signal across 5me points, and 𝑛 = 

number of 5me points. zPerAF, as well as mean normalized PerAF (mPerAF), have been shown to 

be more reliable than other metrics of res5ng state neural ac5vity including ALFF and fALFF (34). 

We chose to u5lize zPerAF given our experience that mPerAF can result in infinity values if the 

mean 5me series is zero.  

 Brain Age Gap (BAG). We es5mated brain age from anatomic MRI by u5lizing brainageR 

v2.1, a publicly available algorithm that has been shown to be one of the most reliable for 

predic5ng age from brain MRI (35). The brainageR model was trained on 3377 healthy individuals 

(mean age = 40.6 years, SD = 21.4, age range 18-92 years) and tested on an independent dataset 

of 857 healthy individuals (mean age = 40.1 years, SD = 21.8, age range 18-90 years). The model 

accepts raw, T1-weighted MRI scans, segments and normalizes them in SPM12 with custom 

templates, and u5lizes the resul5ng gray, white, and CSF volumes in a Gaussian Processes 

regression to predict brain age (36, 37). Chronological age was subtracted from es5mated brain 

age to calculate BAG, a metric of brain health wherein a posi5ve BAG represents accelerated 

brain age (i.e., neuropathology), and a nega5ve BAG represents decelerated brain age (28).  

 Sta5s5cal Analysis. To test the hypothesis that magnitude of neural ac5vity differs 

significantly among biotypes, we compared zPerAF between groups (biotypes and controls) using 

ANOVA with false discovery rate (FDR) correc5on for mul5ple comparisons. We also examined 

Dennis and Cabeza’s compensa5on criterion (Figure 1). For criterion A (inverted U-shaped 

rela5onship between fMRI ac5vity and brain structure), we ploked zPerAF as a func5on of gray 
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maker volume and fiked a polynomial regression model using these two variables. Gray maker 

volume was extracted from anatomic MRI using voxel-based morphometry in SPM12 (38). We 

then compared the polynomial model with a linear model for goodness of fit using ANOVA. We 

did not have fMRI task data to test compensa5on criterion B (compensatory hyperac5vity 

decreases with increased task difficulty), but this criterion also indicates that older individuals 

show reduced compensatory hyperac5vity. Therefore, we examined the Pearson correla5on 

between zPerAF and age. To examine compensa5on criterion C (posi5ve correla5on between 

fMRI ac5vity and task performance), we conducted Pearson correla5ons between zPerAF and 

cogni5ve tes5ng scores. We did not have data to test compensa5on criterion D 

(disrup5on/enhancement of hyperac5ve brain regions alters the rela5onship between neural 

ac5vity and task performance). To test our hypothesis that higher neural ac5vity is associated 

with higher neuropathology, we conducted Pearson correla5on between zPerAF and BAG.  

Results 

 Neural Ac*vity Between Groups. As shown in Figure 2a, z-normalized percent amplitude 

of fluctua5on (zPerAF) was significantly different among biotypes and controls (p < 0.05, FDR 

corrected) in right temporal pole, lef anterior cingulate, right inferior temporal gyrus, bilateral 

insular gyrus, right supramarginal gyrus, lef middle frontal gyrus, lef superior frontal gyrus, lef 

inferior frontal gyrus, lef medial orbital frontal gyrus, lef superior medial frontal gyrus, lef 

precentral gyrus, lef superior temporal gyrus, right lingual gyrus, and right middle frontal gyrus. 

To reduce comparisons, we calculated the mean across these significant regions (Figure 2b) and 

conducted ANOVA with Tukey HSD post hoc correc5on (omnibus F = 13.5, p < 0.001), which 

indicated that Biotype 2 (n=24) showed significant hyperac5vity compared to the other biotypes 
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and controls (n=80; p < 0.004, corrected). Biotypes 1 (n=36) and 3 (n=20) showed significant 

hypoac5vity compared to Biotype 2 and controls (p < 0.02, corrected), but were not different 

from each other (p = 0.931, corrected).  

 Compensa*on Criterion A. Given that only Biotype 2 showed hyperac5vity, compensa5on 

criterion analyses were performed only in this group. The scakerplot of zPerAF as a func5on of 

gray maker volume indicated the expected inverted U-shaped rela5onship (Figure 3). We used 

the mean zPerAF across significant regions to reduce comparisons in this small sample. The 

polynomial fit was significant (R2 = 0.42, p = 0.029) including the polynomial term (p < 0.010). 

The linear fit was not significant (R2 = 0.01, p = 0.776) and was a significantly poorer fit of the 

data compared to the polynomial model (F = 9.2, p = 0.010).  

 Compensa*on Criterion B (Par*al). Again, without task fMRI data, we were only able to 

examine the part of this criterion related to age. We observed the expected nega5ve rela5onship 

between age and mean zPerAF across significant regions in Biotype 2 (r = -0.53, p = 0.018).  

 Compensa*on Criterion C. To reduce comparisons, we used the mean zPerAF across 

significant regions and evaluated only the cogni5ve tests that we previously showed to be 

significantly different in Biotype 2 compared to the other biotypes or controls (14). Consistent 

with criterion C, members of Biotype 2 showed significant posi5ve correla5ons between Leker 

Fluency test score and zPerAF (r = 0.68, p = 0.004) as well as GEC and zPerAF (r = 0.566, p = 

0.011). Both correla5ons indicated beker cogni5ve func5on with higher neural ac5vity. 

 Neural Ac*vity and Brain Age Gap Although we previously found that Biotype 2 had the 

lowest brain age of the biotypes (12), correla5on results between mean zPerAF and BAG indicate 
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that members of Biotype 2 with the highest neural ac5vity have accelerated brain aging (r = 0.45, 

p = 0.042). 

Discussion 

 Here we found that neural ac5vity differed across our three CRCI Biotypes and healthy 

controls, primarily in prefrontal cortex. The regions included the right temporal pole, lef anterior 

cingulate, right inferior temporal gyrus, bilateral insular gyrus, right supramarginal gyrus, lef 

middle frontal gyrus, lef superior frontal gyrus, lef inferior frontal gyrus, lef medial orbital 

frontal gyrus, lef superior medial frontal gyrus, lef precentral gyrus, lef superior temporal 

gyrus, right lingual gyrus, and right middle frontal gyrus. As predicted, Biotype 2 demonstrated 

significant hyperac5vity in these regions compared to the other biotypes and controls.  

Further examina5on of Biotype 2 showed that this hyperac5vity met several of the 

criteria to be considered compensatory (21). Regarding criterion A, there was an inverted U-

shaped rela5onship between brain ac5vity and gray maker volume. Although we did not have a 

measure of task demand to fully test criterion B, we found the expected nega5ve rela5onship 

between age and neural ac5vity, with ac5vity decreasing with older age. Next, for criterion C, we 

found a posi5ve rela5onship between neural ac5vity and cogni5ve performance, with 

hyperac5vity being associated with beker performance on an objec5ve cogni5ve test as well as 

with higher self-ra5ngs of cogni5ve func5on. This provides evidence of successful compensatory 

brain ac5vity, but also suggests that pa5ents may not be aware of the addi5onal neural effort 

required to preserve their cogni5ve func5on as we expected. Self-assessment of cogni5ve 

func5on may need to occur closer to objec5ve cogni5ve loading tasks to evaluate this 

rela5onship more precisely. As noted above, we were unable to test criterion D. This would 
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require a behavioral or pharmacologic trial to examine the media5ng effect of 

disrup5on/enhancement of hyperac5ve brain regions on the rela5onship between neural ac5vity 

and task performance.  

This was the first study of CRCI to iden5fy which pa5ents show neural hyperac5vity. 

Iden5fying which subgroup of pa5ents demonstrates a specific disease biomarker is essen5al for 

precision medicine given that different subgroups will likely have different responses to various 

interven5ons. Our results reveal a specific mechanism (prefrontal ac5vity) that may result in CRCI 

in different groups of pa5ents, which could help determine which treatments and preven5on 

strategies will be most effec5ve for each pa5ent. As we reported previously, there were no 

dis5nguishing demographic or clinical characteris5cs of Biotype 2 expression that could explain 

their rela5vely preserved cogni5ve func5on (12, 14). Our present results suggest that prefrontal 

hyperac5vity may be responsible for this difference in outcome compared to other pa5ents.  

Accordingly, our study was also the first to explicitly test that neural hyperac5vity meets 

the criteria to be considered compensatory (39-41). Our findings are in line with what has been 

reported as compensatory ac5vity during aging (21). This is relevant because many studies show 

that CRCI may reflect age accelera5on (42-47). Cabeza and Dennis (21) showed that age-related 

increases in func5onal connec5vity met three of the four compensatory criteria; (A) increased 

func5onal ac5vity in the frontal cortex during healthy aging and mild cogni5ve impairment but 

decreased func5onal ac5vity during more severe impairments; (B) examina5ons of memory load 

showed that frontal cortex connec5vity has an inverted-U rela5onship with task demand; (C) age-

related increases in frontal cortex func5onal connec5vity was related to successful cogni5ve 

performance. Other studies show similar rela5onships between age and brain ac5vity as well as 
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brain ac5vity and cogni5ve performance and task demand (48-53). High performing older adults 

(demonstra5ng preserved cogni5ve func5on, similar to CRCI Biotype 2) show increased frontal 

cortex ac5vity, compared to low performing older adults (demonstra5ng impaired cogni5ve 

func5on, similar to CRCI Biotype 1) (48-51).  

It remains unclear why or how Biotype 2 pa5ents demonstrate compensatory neural 

hyperac5vity. Given the retrospec5ve nature of our studies, we likely lack the data necessary to 

determine what sets them apart from other pa5ents. It will be essen5al to conduct prospec5ve 

biotyping studies to determine if there are modifiable factors contribu5ng to the cogni5ve 

phenotype of Biotype 2. However, while compensatory hyperac5vity in Biotype 2 may help 

explain their increased cogni5ve resilience, they could also be at risk for accelerated brain aging. 

Our results showed a posi5ve rela5onship between neural ac5vity and brain age gap (BAG, a 

proxy of neuropathology). In a study of healthy adults, Scheller et al. (53) found that together 

APOE variant and brain age moderated the rela5onship between neural hyperac5vity and 

cogni5ve performance. Specifically, APOEe4 carriers with higher brain ages had increased frontal 

cortex ac5vity which correlated with preserved cogni5ve func5on (53). Unfortunately, we cannot 

determine the direc5onal nature of this rela5onship in either study, as data was collected at a 

single 5me point. Neurodegenera5on may result in hyperac5vity, or this rela5onship could be 

bidirec5onal. In the current study, given that 1) hyperac5vity was observed only in Biotype 2 and 

met several criteria for being compensatory and, 2) these pa5ents demonstrated a unique 

rela5onship between BAG and hyperac5vity while simultaneously having the lowest BAG, it is 

more likely that hyperac5vity in this subgroup results in neurodegenera5on rather than the 

reverse. However, further studies are required to beker evaluate these rela5onships.  
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Previous studies of cogni5ve impairment in aging adults found a rela5onship between 

accelerated brain aging, worsening cogni5ve func5on, and clinical disease severity (54-56). Brain 

age at baseline predicted a future advancement from mild cogni5ve impairment to Alzheimer’s 

disease three years later, and this data was used to create hazard ra5os for the development of 

Alzheimer’s based on brain age (54-56). Future studies should include repeated brain imaging 

and cogni5ve tes5ng for cancer survivors to determine if compensatory ac5vity precedes 

increases in brain age, or if brain age can predict further future cogni5ve declines in those with 

CRCI. 

Our results provide novel insights regarding poten5al interven5ons for CRCI by iden5fying 

who has hyperac5vity and where hyperac5vity occurs.  Methods for enhancing compensa5on to 

improve cogni5on include neuromodula5on (15, 16).  Neuromodula5on is a strong candidate for 

addressing abnormal neural ac5vity as it is already FDA approved for use in other 

neuropsychiatric condi5ons (57).   Future prospec5ve studies of neural hyperac5vity could 

determine which pa5ents might benefit most from such strategies, including some of the 

poten5al risks (brain aging) and benefits (compensatory cogni5on) of up versus downregula5on, 

respec5vely. 

 This study is not without limita5ons. As men5oned previously, as this was a retrospec5ve 

study, we did not have a measure of task demand to be able to fully test Criterion B. Future 

prospec5ve studies should include measures of task demand when studying CRCI; for example, 

dual- or concurrent-tasks, tasks that vary demand, linguis5c analyses, physiological measures, or 

self-report measures such as the NASA Task Load Index (58-65). Including self-report measures of 

cogni5ve load or demand afer each objec5ve cogni5ve test could also assess whether pa5ents 
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are aware of any increased neural effort associated with their performance. In addi5on, 

interven5ons which target the hyperac5ve brain regions could be examined to directly test 

Criterion D. For example, researchers could u5lize methods of brain s5mula5on (e.g., transcranial 

magne5c s5mula5on, transcranial alterna5ng current s5mula5on, transcranial direct current 

s5mula5on) or neurofeedback with CRCI pa5ents to examine the effect of these noninvasive 

brain manipula5ons on cogni5on (e.g., 66, 67-72). In addi5on, animal models could be used to 

examine the effects of direct electrical s5mula5on of brain regions linked to CRCI. Both BAG and 

zPerAF are measured from neuroimaging and although they are derived from different imaging 

modali5es, there is inherent neurobiological overlap. Therefore, future studies should examine 

the effect of neural ac5vity on non-imaging biomarkers of neurodegenera5on such as peripheral 

tau and amyloid-beta (73), for example. Finally, this study only includes breast cancer survivors, 

and those who have undergone treatment for other cancer types with other treatment regimens 

may differ in brain ac5vity post-treatment and may not display the same compensatory 

mechanisms. 

 Overall, the current study demonstrates that the neural hyperac5vity observed in CRCI 

Biotype 2 poten5ally meets most of the compensatory criteria. This neural compensa5on may 

explain the preserved cogni5ve func5on observed in Biotype 2 compared to the other CRCI 

Biotypes. Further, neural hyperac5vity may be related to accelerated brain aging. Future studies 

should include measures of cogni5ve decline and manipula5on of frontal cortex ac5vity to 

further test the compensatory criteria, as well as collec5on of longitudinal data to further 

elucidate the rela5onship between hyperac5vity and brain aging.  
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Table 1. Par5cipant Characteris5cs 

 Biotype 1  
(N = 36) 

Biotype 2 
(N = 24) 

Biotype 3 
(N = 20) 

Controls 
(N = 80) 

Stat P 
value 

Age in years mean 
(SD) 

49.30 (8.0) 52.52 (6.4) 52.16 (8.7) 49.29 
(13.2) 

F = 
0.802 

0.494 

Educa5on in years 
mean (SD) 

16.39 (2.4) 17.13 (2.7) 16.47 (2.2) 16.99 
(2.4) 

F = 
0.782 

0.506 

Racial/ethnic 
minority (%) 

36% 13% 12% 16% X2 = 
8.70 

0.033 

Post-menopause 
(%) 

61% 71% 59% 67% X2 = 
1.09 

0.779 

Stage at diagnosis 
(I,II,III %) 

30%,65%,5% 21%,41%,38% 18%,65%,17%  X2 = 
5.42 

0.247 

Radiotherapy (%) 67% 96% 65%  X2 = 
7.91 

0.019 

Hormone blockade 
(%) 

61% 75% 64%  X2 = 
1.27 

0.531 

Months since 
primary therapy* 
ended (SD) 

26.40 (18.7) 49.67 (33.9) 64.25 (82.1)  F = 
4.69 

0.012 

SD: standard devia5on 

*surgery, radia5on, chemotherapy 
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Figure 1. Conceptual Model for Compensatory Neural Hyperac5vity by Dennis and Cabeza 
(2013). Criterion A indicates that compensatory neural ac5vity as measured by func5onal 
magne5c resonance imaging (fMRI), shows an inverted U-shaped rela5onship with brain decline. 
Criterion B indicates that compensatory neural ac5vity decreases with increased task difficulty, 
especially in older individuals. Criterion C indicates that compensatory neural ac5vity is posi5vely 
associated with task performance. Criterion D indicates that the rela5onship between 
compensatory neural ac5vity and task performance is disrupted or enhanced by modula5ng the 
hyperac5ve brain regions. Figure reprinted from Scheller, Minkova (16) under the terms of the 
Crea5ve Commons Akribu5on License (CC BY).  
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Figure 2. Group Differences in Neural Ac5vity. A: Z-normalized percent amplitude of fluctua5on 
(zPerAF) was significantly different among biotypes and controls (p < 0.05, FDR corrected) in right 
temporal pole, lef anterior cingulate, right inferior temporal gyrus, bilateral insular gyrus, right 
supramarginal gyrus, lef middle frontal gyrus, lef superior frontal gyrus, lef inferior frontal 
gyrus, lef medial orbital frontal gyrus, lef superior medial frontal gyrus, lef precentral gyrus, lef 
superior temporal gyrus, right lingual gyrus, and right middle frontal gyrus. Color bar indicates 
the log of the p value. B: The mean zPerAF across significant regions for each group is displayed 
as a boxplot. Biotype 2 (B2) showed significant (p < 0.004, corrected) hyperac5vity compared to 
the other biotypes and controls. Biotypes 1 and 3 showed significant (p < 0.02, corrected) 
hypoac5vity compared to Biotype 2 and controls.  
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Figure 3. Compensa5on Criterion A. In Biotype 2, there was an inverted U-shaped rela5onship 
between z-normalized percent amplitude of fluctua5on (zPerAF) and gray maker volumes 
consistent with Dennis and Cabeza’s criterion A for compensatory neural hyperac5vity. These 
data showed goodness of fit with a polynomial (R2 = 0.42, p = 0.029) but not a linear model (R2 = 
0.01, p = 0.776).  

 

 


