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Abstract 

Background: Research leveraging deep learning (DL) for medical image analysis is increasingly 

using dynamic coronary angiography from cardiac catheterizations to train neural networks. Yet, an 

efficient, automatic method to select appropriate dynamic images for training is still largely missing. 

Methods: We developed DL models using 254 coronary angiographic studies from the Mayo Clinic. 

We utilized two state-of-the-art Convolutional Neural Networks (CNN: ResNet and X3D), to 

identify low quality angiograms through binary classification (satisfactory/unsatisfactory). Ground 

truth for the quality of the input angiogram was determined by two experienced cardiologists. We 

validated the developed model in an independent dataset of 3,208 procedures from 3 Mayo sites.  

Results: 3D-CNN models outperformed their 2D counterparts, with the X3D model achieving 

superior performance across all metrics (AUC 0.98, precision 0.86, and sensitivity 0.89). The 2D 

models processed the video clips faster than 3D models. Despite having a 3D architecture, the X3D 

model had lower computational demand (2.56 GMAC) and parameter count (2.98 M) than 2D 

models. When validating models on the independent dataset, slight decreases in AUC and sensitivity 

were observed but accuracy and specificity remained robust (0.88 and 0.89, respectively for the X3D 

model). 

Conclusion: We developed a rapid and effective method for automating the selection of coronary 

angiogram video clips using 3D-CNNs, potentially improving model accuracy and efficiency in 
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clinical applications. The X3D-S model demonstrates a balanced trade-off between computational 

efficiency and complexity, making it suitable for real-life clinical applications. 
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As machine learning (ML) integrates into cardiology, there's a growing trend of using invasive X-

ray video angiograms from cardiac catheterization for ML-driven analyses. This approach allows for 

evaluating left ventricular systolic function1, coronary vessel stenosis2, and myocardial ischemia3,4. 

Video images represent a valuable source of data for ML models but require careful selection and 

preparation before effectively utilized. The performance of ML models in this context heavily relies 

on selecting the appropriate DICOM images. Nevertheless, the process is complex due to the 

variability in image acquisition, the non-negligible background noise, and the high frequency of 

irrelevant or non-diagnostic images (e.g., short cine to verify puncture site or catheter location). 

These issues hinder the performance of the best ML models.  Additionally, the image quality can be 

affected by other factors like poor catheter engagement, implanted devices (e.g., pacemakers), or 

suboptimal filling of the contrast, reducing image clarity and model accuracy 5,6. Hence, there is an 

unmet need to identify efficient techniques to select the optimal images for model training and 

testing. 

  

Automated methods have already emerged to improve selection efficiency, such as automated 

keyframe image selection and object detection technology2,7. However, these methods were 

developed from still images and might not be suitable for angiographic clip selection. Other methods 

use object detection to label items in the cine images such as heart, arteries, catheters, and non-

cardiac structures (e.g., ribs, diaphragm, pacemaker, clip, or tube). However, these method demand 
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large databases and substantial labor to set up and annotate the images and may not perform well for 

rarely encountered objects. 

Due to the lack of effective tools for selecting high-quality images from video coronary angiograms 

for ML purposes, we developed a new workflow that utilizes advanced Convolutional neural 

networks including 2D (ResNet 2D) and 3D (ResNet 3D and X3D) architectures. ResNet 2D models 

focus on spatial features in images, while ResNet 3D models are designed to capture temporal 

information8,9. The X3D model, a 3D CNN architecture, enhances video processing efficiency and 

accurately predicts left ventricular function in a prior study1. By integrating this selection tool into 

the data preprocessing step, we aim to enhance the accuracy of downstream models and improve the 

overall inference process.  

 

Methods: 

Data Selection 

The utilized dataset of cardiac catheterization imaging was meticulously curated by enlisting adult 

patients who underwent coronary angiography at Mayo Clinic locations in Minnesota, Florida, and 

Arizona between January 1, 2010, and December 31, 2021. An institutional review board approval 

was obtained . Patients who did not consent to use their medical records for research were excluded. 

A preliminary selection of 254 cardiac catheterization examinations was conducted using a random 

sampling methodology to develop a high quality benchmark model. A set of 3,208 cardiac 
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catheterization examinations was then used to validate the model. We also validated the performance 

of the best models in a larger dataset comprising 20,388 angiographic video clips. 

Annotation Criteria 

We annotated individual video clips within each angiographic study rather than make binary 

selections at the study level to ensure that no potentially useful video clips for model training were 

accidentally omitted. Two board-certified cardiologists independently reviewed the angiogram video 

clips. The following criteria were utilized to classify video clips as unsatisfactory: (1) Non-coronary 

angiograms, such as angiograms of the aorta, left ventricle, or other structures; (2) Angiography 

images in which the coronary arteries are obscured due to improper catheter engagement, inadequate 

contrast filling, or partial recordings during percutaneous coronary interventions; (3) Angiography 

images of graft vessels in patients who have undergone coronary artery bypass surgery; (4) 

Angiograms in which the presence of foreign objects, including pacemakers or spinal implants, 

obstructs the coronary arteries, making them difficult for the model to discern. We carefully 

monitored each image to exclude only angiograms where the foreign objects significantly obstructed 

the visualization of most coronary arteries. This approach ensures quality assurance, model 

generalizability, without unnecessary video discarding.  

 

Model Training 

We uniquely and randomly divided angiogram images based on Patient ID into training, validation, 

and test sets with proportions of 70%, 15%, and 15%, respectively. In this study, both 2D and 3D 
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CNN architectures (ResNet-18, ResNet-152, and X3D-S) were employed to evaluate the quality of 

the angiograms10–12. These models were chosen due to their proven capabilities in processing visual 

information and extracting image features, which are particularly beneficial for video analysis.  

DICOM images were converted to PNG and resized to ensure model compatibility—160x160 pixels 

for 3D CNNs and 299x299 pixels for 2D CNNs. We selected videos with a frame rate of 15 frames 

per second based on DICOM header information, ensuring consistent temporal resolution for 

analysis. To capture the most representative frames from angiogram videos, we selected 32 frames 

starting from the 16th frame of each video clip. This range was chosen to avoid initial frames which 

often lack relevant content and final frames which can be affected with contrast washout. For the 2D 

CNN-based experiments, one frame per eight frames within this range was selected, providing 

comprehensive coverage of the video content. In contrast, with 3D-CNNs, we sampled every other 

frame, considering the minimal variation between consecutive frames and focusing on image quality 

assessment rather than detailed temporal relationships.  

These models were trained using Python 3.10.12 and the PyTorch framework version 1.12.1. The 2D 

and 3D ResNet models underwent a training process spanning >100 epochs. We utilized the Adam 

optimizer, complemented by a step decay learning rate schedule (StepLR) with a step size of 30. The 

2D ResNet model was configured with an learning rate of 5e-5, a weight decay factor of 1e-3, and a 

batch size of 32. Similarly, the 3D ResNet model was set with a learning rate of 1e-4 and similar 

weight decay and batch size values. The X3D-S model followed a similar strategy but differed in 
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weight decay at 1e-4 and a batch size of 64. Besides optimizing hyperparameters, we used data 

augmentation methods like flipping, rotating, perspective changes, Gaussian blurring, and image 

normalization to mimic real clinical variations and aid the models to better adapt to actual clinical 

situations. 

Model Evaluation 

The efficacy of our models in classifying angiogram images into satisfactory or unsatisfactory was 

assessed using the following metrics13 14. The Area Under the Receiver Operating Characteristic 

curve (AUC) reflects the model's discriminative ability by plotting sensitivity versus 1 - specificity, 

with higher values indicating superior performance. Sensitivity, the proportion of true positive cases 

correctly identified, is given by ����������� 	
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   �5. Accuracy encapsulates the overall effectiveness of 

the models, precision is vital for reducing false positive diagnoses, and the F1 score balances the 

trade-off between precision and recall, which is particularly relevant in the face of class imbalance. 
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To assess the model's complexity and efficiency, we used the ptflops package 0.7.2.2 to calculate the 

multiply–accumulate operation (MAC)15. Parameters refer to the total count of weights, bias terms, 

and other parameters processed during the model's training, with the unit of measurement being 

millions (M). A smaller number of parameters indicates a lower computational cost. MACs serve as 

a widely-used measure of computational complexity especially in models that rely heavily on linear 

algebra operations like CNNs10,16,17. In addition, we used the frames per second (fps) metric, an 

indicator used in previous studies16, to represents the number of frames transmitted per second, 

which reflects the real-time nature of the ML model. Each model's time required to process a single 

video clip was reported for comparative analysis at the video level. These additional metrics are 

crucial for understanding the feasibility of deploying the ML models in clinical environments where 

computational efficiency can be limited. We performed model training on the mForge platform, 

utilizing NVIDIA V100 GPUs supported by the collaborative infrastructure between Mayo Clinic 

and the National Center for Supercomputing Applications, enhanced by a 100Gb/s InfiniBand 

network.  

 

Result 

Dataset Composition and Quality Classification  

The study’s characteristics are presented in Table 1. It consists of 857 video clips deemed 

satisfactory and 180 video clips deemed unsatisfactory. The mean age of the participants were 62.7 
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and 64.7 years in the satisfactory vs. unsatisfactory groups. The percentage of male patients was 

57.3% in the satisfactory group and 60% in the unsatisfactory group. 

Performance Metrics Across CNN Architectures 

In the model development Table 2 summarizes the relative effectiveness of various CNN 

architectures. Among the 2D models, the ResNet-18 achieved an AUC of 0.89, while the ResNet-152 

achieved an AUC of 0.93 (Figure. 1). Using the 3D architectures, the ResNet-18 and ResNet-152 

models achieved significantly higher AUCs of 0.95, and 0.97 (Figure. 1). The X3D-S architecture 

achieved an AUC of 0.98 along with high scores in accuracy of 0.96, precision of 0.86, and 

specificity of 0.98 (Figure. 1). The F1 scores across the models, indicative of a balance between 

precision and recall, ranged from 0.63 to 0.87, with the 3D models generally outperforming the 2D 

counterparts. Figure 2 illustrates the adeptness of the X3D-CNN model in distinguishing between 

satisfactory and unsatisfactory angiograms within the test set. 

Computational Analysis of CNN Models 

The 2D CNN models, ResNet-18 and ResNet-152 exhibited parameter sizes of 11.18 M and 58.15 M, 

with computational complexities of 3.41GMAC and 21.46 GMAC, respectively. Both models 

achieved similar frame rates of approximately 164.5 fps and 207.1 fps, with a processing time of 

24.31 and 19.32 millisecond (ms) per study indicating their efficiency in handling 2D image data. 

Transitioning to 3D architectures, ResNet-18 and ResNet-152 resulted in a significant increase in 

parameter sizes to 33.2 M and 117.41 M while the computational complexities rose to 59.79 GMAC 
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and 136.11 GMAC, respectively. These models processed the data at the rates of 268.8 fps and 239.2 

fps, where each study taking 67.99 and 66.90 ms, reflecting the increased computational demand for 

3D image analysis. Notably, the X3D-S model, maintained a balance between computational 

efficiency and performance with a minimal parameter size of 2.98 M and a computational 

complexity of 2.56 GMAC. It achieved a processing speed of 267.4 fps and took 59.83 ms per study, 

highlighting its capability to deliver high performance with less resource utilization as compared to 

other 3D models. This efficient performance underscores the potential of X3D-S in applications 

requiring high-speed and accurate 3D image analysis with constrained computational resources. 

Validation of 3D CNNs on an Independent Dataset 

Further evaluation of the 3D CNN models on an independent dataset for cardiac function analysis 

included 20,388 video clips from 2,725 patients. The performance metrics outlined in Table 4 reveal 

that the models performed similarly well. The X3D-S model slightly edged out with an AUC of 0.90, 

accuracy of 0.88 , sensitivity of 0.78 and specificity of 0.89, respectively, despite its precision being 

lower at 0.49. The ResNet-18 3D and ResNet-152 3D models achieved an AUC of 0.90 and 0.88, 

with comparable sensitivity and specificity values, illustrating their robustness in assessing the 

quality of angiographic video clips across a diverse dataset. The confusion matrix in Figure 3 

illustrates that the X3D model correctly predicted 1,920 unsatisfactory and 15,971 satisfactory 

angiograms while misclassifying 1,966 satisfactory and 531 unsatisfactory cases, indicating a 

reliable quality assessment with a limited misclassification rate. 
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Discussion 

This research introduces an innovative and efficient deep learning approach for automating the 

selection of appropriate X-ray angiogram videos for ML-driven research in the Cath lab. It features a 

video selection method that benefits both the training of models and pre-inference screening. When 

evaluating various CNN models, 3D CNNs—particularly ResNet-152 and X3D-S—emerged as the 

top performers. Notably, the X3D-S model appears to strike an optimal balance between 

computational efficiency and complexity, rendering it highly suitable for clinical applications. This 

method was validated using an independent dataset comprising 20,388 videos from 3,208 

angiographic studies, demonstrating the models' reliability and practical applicability (Figure. 4). 

This advancement offers a significant contribution to cardiac imaging by enabling the automated 

selection of high-quality coronary angiogram videos, thereby enhancing the accuracy of AI models 

in these fields. 

There is a limited of literature regarding the auto-selection of suitable video X-ray images for 

training ML models. This could be attributed to the fact that past studies on angiograms mainly 

focused on delineating the coronary arteries, while training data has been commonly aligned with 

frame-by-frame labels. Nonetheless, when the model's output pertains to cardiac function or 

predicting clinical events, it is often redundant to meticulously analyze and label each video clip of 

training data. Rather, each angiographic study is assigned a study-wise label for model training. This 
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necessitates an automated method to help with excluding the inappropriate cine clips from each 

angiographic exam. A common approach involves setting rules based on information in the DICOM 

headers, such as selecting the first few clips, ensuring the selection of a minimum number of frames, 

and specifying a particular frame rate. Other existing automated methods2,7, such as keyframe 

selection and object detection suffer from major limitations that hinder their performance in selecting 

appropriate videos for input. Consequently, this study introduces an alternative and useful approach 

to automatically selecting qualified angiographic images for model inputs. This method may simplify 

the preparation of angiographic data for machine learning applications, thereby facilitating more 

accurate and efficient model development.  

 

In our study, evaluations were conducted on an independent dataset containing 20,388 video clips 

from 2,725 patients, examining the ResNet-18 3D, ResNet-152 3D, and X3D-S models. The X3D-S 

model demonstrated the best performance in terms of AUC and accuracy. Taking the X3D model as 

an example, its automated screening recommended excluding 19.1% of videos, as opposed to a 

12.0% exclusion rate seen with manual review. Of the videos classified as satisfactory by the model, 

96.8% conformed to quality standards, indicating a high negative predicted value of the model. 

However, the application of the X3D-S model to the independent dataset led to a decrease in AUC 

from 0.95 to 0.90 and a reduction in sensitivity from 0.89 to 0.78. Similar declines in performance 
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were observed in the ResNet-18 3D and ResNet-152 3D models, highlighting the challenge of 

maintaining consistent performance across different datasets. 

The variability in model performance across datasets is significantly influenced by the diverse and 

complex nature of these datasets, complicating the establishment of a universal standard for 

classifying images as unsatisfactory. This complexity is further heightened in the case of coronary 

angiography images from patients with coronary artery bypass grafting, complicating the image 

selection process. While graft angiograms from patients with prior surgeries were excluded, images 

where native vessels are clearly visible remained in consideration to preserve essential data. 

However, the post-surgery appearance of native vessels can vary greatly, leading to potential 

exclusion without consistent criteria. Moreover, the task of accurately delineating coronary arteries is 

complicated by the presence of foreign objects in the image, which can obscure crucial details. This 

adds another layer of complexity to maintaining uniform evaluation standards across different 

datasets. 

Limitations 

This study's limitations stem from using datasets exclusively from the Mayo Clinic limiting the 

model's generalizability without external validation. Despite this, the model performed well across 

Mayo Clinic's diverse locations, suggesting institution-specific generalizability might not be critical 

for image selection in model training. In future studies, fostering inter-institutional collaborations to 

gather cardiac catheterization X-ray images from varied regions and populations could significantly 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.24306184doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15

broaden the model's applicability. Moreover, leveraging transfer learning18 strategy or using 

attention-based mechanisms19 may improve the model's adaptability and precision effectively. 

Conclusion 

This research presents a streamlined and efficient methodology for creating an automated 3D CNN-

based quality evaluation tool for video coronary angiograms, exhibiting significant accuracy and 

effectiveness. The principal advantage of this model is its facilitation of accelerated machine learning 

model development within Cath lab research domains, particularly for studies necessitating extensive 

video angiogram analysis. Furthermore, it possesses the potential to automate input selection for 

models in real-world applications, thereby augmenting predictive precision.  

 

 

 

 

References: 

1. Avram R, Barrios JP, Abreau S, et al. Automated Assessment of Cardiac Systolic Function 

from Coronary Angiograms With Video-Based Artificial Intelligence Algorithms. JAMA Cardiol. 

2023;8(6):586. doi:10.1001/jamacardio.2023.0968 

2. Avram R, Olgin JE, Ahmed Z, et al. CathAI: fully automated coronary angiography 

interpretation and stenosis estimation. Npj Digit Med. 2023;6(1):1-12. doi:10.1038/s41746-023-

00880-1 

3. Fearon WF, Achenbach S, Engstrom T, et al. Accuracy of Fractional Flow Reserve Derived 

from Coronary Angiography. Circulation. 2019;139(4):477-484. 

doi:10.1161/circulationaha.118.037350 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.24306184doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16

4. Ben-Assa E, Abu Salman A, Cafri C, et al. Performance of a novel artificial intelligence 

software developed to derive coronary fractional flow reserve values from diagnostic angiograms. 

Coron Artery Dis. 2023;34(8):533. doi:10.1097/MCA.0000000000001305 

5. Gao Z, Wang L, Soroushmehr R, et al. Vessel segmentation for X-ray coronary angiography 

using ensemble methods with deep learning and filter-based features. BMC Med Imaging. 

2022;22(1):10. doi:10.1186/s12880-022-00734-4 

6. Sawano S, Kodera S, Sato M, et al. Age prediction from coronary angiography using a deep 

neural network: Age as a potential label to extract prognosis-related imaging features. PLOS ONE. 

2022;17(10):e0276928. doi:10.1371/journal.pone.0276928 

7. Moon JH, Lee DY, Cha WC, et al. Automatic stenosis recognition from coronary 

angiography using convolutional neural networks. Comput Methods Programs Biomed. 

2021;198:105819. doi:10.1016/j.cmpb.2020.105819 

8. Khanna D, Jindal N, Rana PS, Singh H. Enhanced spatio-temporal 3D CNN for facial 

expression classification in videos. Multimed Tools Appl. 2024;83(4):9911-9928. 

doi:10.1007/s11042-023-16066-6 

9. Rostami B, Fetterly K, Attia Z, et al. Deep Learning to Estimate Left Ventricular Ejection 

Fraction From Routine Coronary Angiographic Images. JACC Adv. 2023;2(9):100632. 

doi:10.1016/j.jacadv.2023.100632 

10. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE 

Conf Comput Vis Pattern Recognit CVPR. Published online June 2016:770-778. 

doi:10.1109/CVPR.2016.90 

11. Xu W, Fu YL, Zhu D. ResNet and its application to medical image processing: Research 

progress and challenges. Comput Methods Programs Biomed. 2023;240:107660. 

doi:10.1016/j.cmpb.2023.107660 

12. Feichtenhofer C. X3D: Expanding Architectures for Efficient Video Recognition. 2020 

IEEECVF Conf Comput Vis Pattern Recognit CVPR. Published online June 2020:200-210. 

doi:10.1109/CVPR42600.2020.00028 

13. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. J 

Mach Learn Res. 2011;12(85):2825-2830. 

14. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861-874. 

doi:10.1016/j.patrec.2005.10.010 

15. Sovrasov V. ptflops: a flops counting tool for neural networks in pytorch framework. 

Published 2018. https://github.com/sovrasov/flops-counter.pytorch 

16. Niu C, Gao O, Lu W, Liu W, Lai T. Reg-SA–UNet++: A Lightweight Landslide Detection 

Network Based on Single-Temporal Images Captured Postlandslide. IEEE J Sel Top Appl Earth Obs 

Remote Sens. 2022;15:9746-9759. doi:10.1109/jstars.2022.3219897 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.24306184doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17

17. Yao C, Liu W, Tang W, et al. Evaluating and analyzing the energy efficiency of CNN 

inference on high-performance GPU. Concurr Comput Pract Exp. 2021;33(6):e6064. 

doi:10.1002/cpe.6064 

18. Serrano-Antón B, Otero-Cacho A, López-Otero D, et al. Coronary Artery Segmentation 

Based on Transfer Learning and UNet Architecture on Computed Tomography Coronary 

Angiography Images. IEEE Access. 2023;11:75484-75496. doi:10.1109/ACCESS.2023.3293090 

19. Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, 

Bendechache M. Brain tumor segmentation based on deep learning and an attention mechanism 

using MRI multi-modalities brain images. Sci Rep. 2021;11(1):10930. doi:10.1038/s41598-021-

90428-8 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.24306184doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306184
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 18

TABLES 

Table 1. Dataset Characteristics for Model Development 

 
Satisfactory Unsatisfactory 

Number of video clips  857 180 

Number of exams 150 104 

Number of patients 135 96 

Age (year, mean ± SD) 62.7±13.2 64.7±12.1 

Male gender (%) 57.3 60.0 

 

Table 2 Comparative Performance Metrics of CNN Models 

 
AUC Accuracy Precision Sensitivity Specificity F1-score 

ResNet 18 2D 0.89 0.85 0.50 0.86 0.85 0.63 

ResNet 152 2D 0.93 0.88 0.57 0.81 0.89 0.67 

ResNet18 3D 0.95 0.87 0.51 0.95 0.85 0.67 

ResNet 152 3D 0.97 0.88 0.54 0.90 0.88 0.68 

X3D-S 0.98 0.96 0.86 0.89 0.98 0.87 

Abbreviations: CNN; convoluted neural network, AUC; area under the curve. 
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Table 3. Model Complexity and Computational Efficiency 

 
Parameters (M) MAC (G) FPS 

Processing Time 
Per Clip (ms) 

ResNet 18 2D 11.18 3.41 164.5 24.31 

ResNet 152 2D 58.15 21.46 207.1 19.32 

ResNet18 3D 33.2 59.79 268.8 67.99 

ResNet 152 3D 117.41 136.11 239.2 66.90 

X3D-S 2.98 2.56 267.4 59.83 

Abbreviations: M, million; FLOPs, floating-point operations per second; MAC, multiply-accumulate 

operations; G, giga; FPS, frames per second; ms, millisecond. 

 

Table 4 Predictive Outcomes on Independent Dataset 

 
AUC Accuracy Precision Sensitivity Specificity F1-score 

X3D-S 0.90 0.88 0.49 0.78 0.89 0.61 

Res3D-18 0.90 0.87 0.48 0.78 0.88 0.59 

Res3D-152 0.88 0.86 0.44 0.74 0.87 0.56 

Abbreviations: AUC, area under the curve. 
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Figures Legends: 

Figure 1 Comparative Analysis of AUC Scores Across 2D and 3D CNN Models for Image 

Quality Classification. 

 

Figure 2 Examples of Unsatisfactory Vs. Satisfactory Angiograms as Assessed by Cardiology 

Experts With A Corresponding Output of The Quality Check 3D-CNN Model. 

 

Figure 3 Confusion Matrix of The X3D Model Applying The Independent Dataset. 

 

Figure 4 Central Illustration: Workflow of Model Development. 

PCI; percutaneous coronary intervention, CNN; convoluted neural network, AUC; the area under the 

receiver operating characteristic curve 
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