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Abstract
Advancement in next-generation sequencing technologies has led to a rise in discovery of variants of
uncertain significance, which are not clearly categorized as pathogenic or benign. In silico tools, which
have been developed to help classify these variants, exhibit variations in outcome. This study aims to
evaluate the performance of 6 widely-used in silico tools in predicting the pathogenicity of
drug-actionable gene variants in 9 solid cancers.

We selected drug-actionable genes according to NCCN guidelines on breast, ovarian, colorectal,
melanoma of skin, thyroid, bladder, pancreatic, prostate, and biliary cancer. From these genes, we
gathered information on 1161 total missense variants (pathogenic = 606, benign = 555). Each variant’s
pathogenicity was determined based on assertions from three databases: ClinVar, OncoKB, and My
Cancer Genome. We selected variants with one or more concordant databases and excluded variants with
conflicting classifications. The performance of the in silico tools (Align-GVGD, CADD, FATHMM,
MutationTaster2021, Polyphen-2 (HumDiv), and Polyphen-2 (HumVar)) was evaluated by calculating and
comparing their overall accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC).

Overall, all of the in silico tools demonstrated high sensitivity (0.738-0.927) and moderately-high
accuracy (0.555-0.829). Excluding MutationTaster2021, all tools demonstrated low specificity
(0.242-0.559) and MCC (0.107-0.413). MutationTaster2021 exhibited the highest performance overall
and across solid cancer types. Conversely, Align-GVGD exhibited low performance overall and across
cancer types.



Tools demonstrating high sensitivity (CADD: 0.983, MutationTaster2021: 0.927, REVEL: 0.851) could
be used to rule out the pathogenic variants. MutationTaster2021, with a comparatively high specificity
(0.721), could be considered as an additional test to rule in the pathogenic variants. However, given the
varying performance and limitations of the tools according to solid cancer type, clinicians should remain
cautious in their usage.

Introduction
Next-generation sequencing (NGS) is a powerful tool that enables precise and comprehensive genomic
analysis in a quick and cost-effective manner [1]. NGS results are frequently used as an indication for
certain prognostics and therapeutic options recommended by the National Comprehensive Cancer
Network (NCCN) guidelines [1]. The increased utility of NGS in modern medicine has led to the
discovery of many variants of uncertain significance (VUS), which are not clearly categorized as
pathogenic or benign. Most of these variants are missense substitutions arising from a single nucleotide
substitution to the open reading frame [2]. Currently, VUS represent approximately 40% of all identified
variants, signifying a large gap in currently-available knowledge [3]. The interpretation based on the
differences between wild type and variant amino acids has not been studied sufficiently, leading to errors
in clinical judgment [1]. Accordingly, there exist guidelines that provide recommendations on how to
interpret sequence variants [4-5]. Most of these guidelines provide five categories based on variant
reporting and disease association: benign, likely benign, likely pathogenic, pathogenic, and VUS.

In silico variant classification prediction tools play a pivotal role in clinical settings by offering valuable
insights into disease mechanisms, personalized treatment options, and early detection of genetic disorders.
However, their variation in prediction algorithms has led to variation in classification of missense variants
as pathogenic or benign. The prediction algorithm relies on assumption by two different general
approaches: sequence-based and structure-based. The sequence-based approach assumes that differences
in amino acid sequence from gene mutation and respective changes in biochemical characteristics of the
sequence leads to pathogenicity. Conversely, the structure-based approach uses data derived from 3-D
protein structure, including stability and amino acid interactions, to determine pathogenicity [6]. Since
each algorithm has a different methodology behind their classifications, the reliability of each tool needs
to be tested [7]. There are 6 commonly used in silico tools: Align-GVGD, CADD, FATHMM,
MutationTaster2021, PolyPhen-2, and REVEL.

Polyphen-2 inputs eight sequence-based and three structure-based predictive features to its naive Bayes
classifier [8]. According to the user’s mutations of interest, either HumDiv- or HumVar-trained
Polyphen-2 is selected. The output is the naive Bayes posterior probability a given mutation is damaging,
which the tool can then use to categorize the mutation as benign, possibly damaging, or probably
damaging [8]. Align-GVGD is a commonly-used tool for BRCA1/2 variant classification. It computes and
combines two types of conservation scores, Grantham Variation (GV) and Grantham Deviation (GD), to
classify mutations in classes C ∈{0,15,25,35,45,55,65}, ranging from least likely to most likely to
cause damage [9]. MutationTaster2021, the latest release of MutationTaster, replaces the Naive Bayes
classifier of previous versions with Random Forest models for predictions of increased accuracy. The
variants are categorized as either deleterious or benign [10]. Functional Analysis through Hidden Markov
Models (FATHMM) utilizes a hidden Markov modeling approach that assesses multiple sequence



alignments and alignments of conserved protein domain families. This analysis is then used to calculate
position-specific amino acid probabilities [11].

While Polyphen-2, Align-GVGD, MutationTaster2021, and FATHMM predict pathogenicity
independently, CADD and REVEL are meta-predictors that predict pathogenicity based on a combination
of independent variant classification scores. In prior studies, meta-predictors have demonstrated superior
performance compared to that of single predictors [14]. Given the clinical relevance of both single and
meta-predictive tools, there is a need for greater investigation of their performance and reliability. Our
study is the first to extensively evaluate in silico tool performance in nine common solid tumors with
actionable genetic targets according to NCCN guidelines.

Methods

Cancer Type Selection
We selected solid cancer types with high cancer incidence in the United States and actionable genetic
targets according to NCCN guidelines [15-16]. Our selection of 9 common solid cancers included breast,
prostate, colorectal, melanoma of skin, bladder/urothelial, pancreatic, thyroid, ovarian, and biliary
cancers. Lung cancer was not included because the accuracy of in silico predictors for variants related to
NSCLC has been analyzed in a previous study [17].

Actionable Genetic Target Selection
Actionable genetic targets corresponding to each cancer type were selected according to National
Comprehensive Cancer Network (NCCN) guidelines [15]. The actionable gene mutation targets for each
selected cancer type are available in Table 1.

Table 1. Actionable Genetic Targets According to Solid Cancer Type.
Actionable genetic targets of nine cancer types were compiled. Genes in bold lettering were used in
analysis.



Variant Selection
The clinical significance of each variant (benign, likely benign, likely pathogenic, or pathogenic) was
determined based on assertions in three databases: ClinVar, OncoKB, and My Cancer Genome. We
selected variants with one or more concordant databases and excluded variants with conflicting
classifications. To further organize the dataset, we grouped benign and likely benign variants into the
“benign” category and pathogenic and likely pathogenic variants into the “pathogenic” category. Variants
with conflicting interpretations, uncertain clinical significance, or inconclusive clinical significance were
excluded from our analysis. Following the initial dataset compilation, this process of variant collection
and classification was repeated to account for potential errors. A final dataset of 1161 missense variants
(pathogenic = 606, benign = 555) was curated for analysis.

In silico Classification Tool Selection
In the present study, we evaluated six in silico tools: Polyphen-2 (consisting of two models: HumDiv,
HumVar), Align-GVGD, MutationTaster2021, FATHMM, CADD, and REVEL [8-13]. These
commonly-used tools were selected based on their inclusion in the ACMG Standards and Guidelines [4],
as well as further literature [17].

Parameter Setting
We utilized the default thresholds, as established by the tools’ authors, for variant classification. Scores of
≥C35 for Align-GVGD, >15 for CADD,, and >0.50 for REVEL indicated pathogenicity.
MutationTaster2021 classifies variants directly as Deleterious, Deleterious (ClinVar), Benign, or Benign
(auto).



Evaluation of Performance
Each of the 652 total missense variants in our dataset was classified using each in silico tool. Correct
predictions of pathogenicity were identified as true positive (TP) results, and correct predictions of benign
variants were identified as true negative (TN) results. The overall accuracy
( ), sensitivity ( ), specificity ( ), positive predictive value (𝑂𝐴 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 𝑆𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 𝑆𝑝 = 𝑇𝑁

𝑇𝑁+𝐹𝑃

), negative predictive value ( ), and Matthews correlation coefficient (𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 𝑁𝑃𝑉 = 𝑇𝑁

𝑇𝑁+𝐹𝑁

) were also calculated for each tool.𝑀𝐶𝐶 = 𝑇𝑃𝑥𝑇𝑁−𝐹𝑃𝑥𝐹𝑁
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

Sensitivity (true positive rate) indicated the tools’ ability to identify pathogenic variants, and specificity
(true negative rate) indicated the tools’ ability to identify benign variants.

PPV and NPV evaluate the clinical relevance of the tool as it determines the probability of the tool
correctly classifying the variants. PPV indicates the probability of the variant being pathogenic after a
positive result and NPV indicates the probability of the variant being negative after a negative result.

MCC was used as a balanced performance measure to account for unequal sample size for each prediction
tool and proportion of benign to pathogenic variants. MCC values indicate the correlation between
predictions and real target values, with a range of -1 (always falsely predicted) to +1 (always perfectly
predicted). A value of 0 corresponds to a completely random prediction.

Results
Characteristics of selected genes
The pool of genes representing actional genetic targets was narrowed down to BRCA1, BRCA2, and
PIK3CA for breast cancer; BRCA1 and BRCA2 for ovarian cancer; KRAS, NRAS, BRAF, and ERBB2
for colorectal cancer; NRAS, KIT, and BRAF V600 for melanoma; RET and BRAF for thyroid cancer;
BRCA1 and BRCA2 for pancreatic cancer; FGFR3 for bladder cancer; BRCA2 for prostate cancer; and
BRAF for biliary cancer. These genes are presented and bolded in Table 1.

Characteristics of selected variants
After excluding variants with conflicting classifications (i.e., lacking concordance between databases), the
final dataset consisted of 1161 missense variants (pathogenic = 606, benign = 555) across 9 different
cancer types. The number of pathogenic and benign variants for each cancer type is available in Table 2.

Table 2. Pathogenic and Benign Variant Count by Cancer Type.
The number of pathogenic versus benign variants analyzed overall and in each cancer type are displayed.



Overall Performance
The overall performance of each in silico tool was evaluated based on accuracy, sensitivity, specificity,
PPV, NPV, and MCC. Performance scores are highlighted in Supplementary material Table 1. In general,
all of the in silico tools achieved high sensitivity (0.738–0.983) and moderately high NPV (0.587–0.947).
Specificity was low for all tools (0.242–0.559) with the exception of MutationTaster2021 (0.721).
MutationTaster2021 demonstrated the highest overall performance profile with the highest accuracy
(0.829), specificity (0.721), PPV (0.784), and MCC (0.666). Superior performance is most evident in
accuracy and NPV, where MutationTaster2021 achieved scores >15% higher than other tools. However,
CADD outperformed MutationTaster2021 in terms of NPV (0.947) and sensitivity (0.983). Conversely,
Align-GVGD demonstrated the lowest overall performance, with the lowest accuracy (0.555), specificity
(0.242), PPV (0.548), NPV (0.587), and MCC (0.107).

Performance of all tools based on solid cancer type
Performance of each tool was evaluated by solid cancer type using the same measures as for overall
performance evaluation. Results of this analysis are displayed in Supplementary material Table 1 .

In breast cancer variant classification, variants were excluded in each of the tools: Align-GVGD (13/823),
CADD (2/823), MutationTaster2021 (9/823), FATHMM (14/823), PolyPhen-2 (HumDiv) (12/823),
PolyPhen-2 (HumVar) (12/823), and REVEL (1/823). MutationTaster2021 demonstrated high
performance across all performance measurements. CADD achieved the greatest sensitivity (0.986) and
NPV (0.972) out of the tools, but had one of the lowest performances for accuracy (0.626) and specificity
(0.372). Notably, Align-GVGD achieved a MCC score of 0.114 and the lowest specificity of 0.237.

In colorectal cancer variant interpretation, 2 of 127 variants were excluded in MutationTaster2021. There
were no variant exclusions in the other tools. CADD and FATHMM obtained undefined NPV scores, as



well as specificities and MCCs of 0. In terms of sensitivity, CADD and FATHMM achieved 100%.
MutationTaster2021 achieved scores greater than or equal to 80% across all performance measures,
except specificity (0.148) and MCC (0.290). High performance was demonstrated in terms of accuracy,
sensitivity, and PPV, with each algorithm achieving scores >75%.

In melanoma variant interpretation, 2 out of 87 variants were excluded when observed with
MutationTaster2021. CADD and FATHMM obtained undefined NPV scores, as well as specificities and
MCCs of 0. CADD, FATHMM, and MutationTaster2021 achieved sensitivity scores of 100%. Each
algorithm achieved a score >75% for accuracy, sensitivity, and PPV.

In ovarian cancer variant classification, variants were excluded for Align-GVGD (13/706), CADD
(2/706), MutationTaster2021 (7/706), FATHMM (14/706), PolyPhen-2 (HumDiv) (13/706), PolyPhen-2
(HumVar) (13/706), and REVEL (2/706). MutationTaster2021 demonstrated the greatest overall
performance and achieved the highest scores across the performance measures, excluding sensitivity
(0.907) and NPV (0.939). CADD achieved the greatest sensitivity (0.988) and NPV (0.982), but did not
display high performance in other performance measures. Align-GVGD achieved the lowest scores for
MCC (0.121) and specificity (0.233).

In pancreatic cancer variant classification, variants were excluded for Align-GVGD (1/457), FATHMM
(2/457), and MutationTaster2021 (3/457). MutationTaster2021 demonstrated high performance across all
performance measures but was outperformed by CADD in terms of sensitivity (0.895 vs 0.976) and NPV
(0.892 vs 0.932). Align-GVGD resulted in a low specificity and MCC, once again, with scores of 0.220
and 0.121, respectively.

In prostate cancer variant classification, variants were excluded for Align-GVGD (1/454), FATHMM
(2/454), and MutationTaster2021 (3/454). Again, MutationTaster2021 demonstrated the highest
performance across all performance measurement, except sensitivity and NPV. While MutationTaster2021
achieved sensitivity and NPV scores of 0.895 and 0.891, CADD achieved higher scores of 0.976 and
0.922. Align-GVGD and FATHMM achieved the lowest MCC scores of 0.125 and 0.143, respectively.

In biliary cancer variant classification, variants were excluded for Align-GVGD (8/91).
MutationTaster2021 demonstrated high performance across all performance measurements, excluding
sensitivity (0.877 vs 0.982) and NPV (0.500 vs 0.667), where it was outperformed by CADD. Specificity
scores for all tools is low, with a narrow range of 0.059 to 0.265. All tools also had low MCC scores,
ranging from 0.021 to 0.112.

No variants in thyroid cancer variant interpretation were excluded. MutationTaster2021 and REVEL
performed highly in all performance measures. Each algorithm demonstrated high sensitivity and PPV,
with scores >75%. Notably, FATHMM obtained an undefined NPV score, as well as specificity and MCC
of 0. However, it achieved a sensitivity of 100%.

Discussion
This study evaluates in silico tool performance for predicting pathogenicity of missense variants of
multiple solid tumors with actionable genetic targets. Our findings indicate MutationTaster2021, an



individual predictor, as the highest performer in predicting pathogenicity. This deviates from prior studies
indicating superior performance of meta-predictors, such as REVEL and CADD, over individual
predictors [18-19].

CADD demonstrated the highest or second highest sensitivity in overall analyses and across each cancer
type. This highlights its ability to effectively detect a higher proportion of deleterious variants. However,
CADD also exhibited consistently low specificity (<0.4) across each cancer type. Its overall specificity
was calculated as 0.319, which is 55.7% lower than 0.721, the overall specificity of MutationTaster. This
suggests that CADD may be useful in detecting truly deleterious variants but at the cost of a higher
probability of false positives. It is worth noting that CADD and FATHMM exhibited specificities and
MCC of 0.00 and undefined NPV in colorectal, melanoma, and thyroid cancer analyses. This can be
attributed to the absence of true negative and false negative classes in our dataset, and thus our analyses of
CADD and FATHMM are inconclusive for these cancer types.

REVEL demonstrated on par or high performance across each performance metric compared to the other
tools. Since it does not demonstrate notably higher performance, we suggest that is not the optimal tool.
Like CADD, REVEL resulted in high sensitivity and low to moderately-low specificity in each cancer
type. Previous studies have shown REVEL to outperform other in silico tools, including CADD, but our
results indicate that REVEL may not be as accurate in predicting pathogenicity of variants corresponding
to certain solid cancer types in this study. However, since REVEL did not result in an undefined NPV or
specificity of zero in colorectal cancer or melanoma, REVEL may be the more useful meta-predictor tool
for classifying variants of uncertain significance in these cancer types.

Align-GVGD’s worst overall performance in this study aligns with a previous study investigating in silico
tools for variant classification in clinically actionable NSCLC variants [17]. Moreover, Align-GVGD
resulted in an MCC greater than zero and less than 0.2 in all cancer types, which suggests that the model’s
performance is better than random chance but is still significantly limited in its predictive ability. This
further supports its inferior performance and its inability to handle imbalanced class distributions.

In our study, MutationTaster2021, launched on 07/02/2021, stands as the newest tool [10], while
Align-GVGD, last updated on 09/18/2014, stands as one of the oldest tools [9]. The contrasting results
between the latest and oldest tools in our investigation underscores the rapid advancements in precision
genomics and emphasizes the importance of tools staying current to accommodate the expanding
knowledge of pathogenic variants. Additionally, our study utilizes FATHMM-MKL, a model launched in
2013 [11]. The updated version, FATHMM-XF, launched in 2018 may be worth investigating in future
studies [20].

Clinical relevance of in silico classification tools is demonstrated by the dependency of biotechnology
companies on these tools in assessing patient samples. Our study reveals a number of issues that may
potentially limit usage of these tools in clinical settings. First, a large degree of variability was observed
in tool performance among missense variants of different solid cancer types with actionable genetic
targets. False negative and/or false positive predictions pose risk for subpar, and thus ineffective,
treatment for patients, which may result in exacerbation of medical conditions and elevation of healthcare
expenses. Additionally, our research exclusively focuses on missense variants because the majority of



variants pertinent to our selected cancer types are missense substitutions arising from single nucleotide
substitutions in the open reading frame [3]. However, deducing the functional effects of missense variants
is more complex compared to frameshift or nonsense variants [21]. Furthermore, the relatively low
sample sizes for colorectal, bladder, biliary, melanoma, and thyroid cancers and the relatively high class
imbalance (Table 2) should be taken into consideration when interpreting results for these specific cancer
types. Despite its limitations, our findings underscore the nuanced nature of in silico tool performance in
different cancer types.

Although in silico tools capable of analyzing mutations beyond missense mutations exist, such as DANN
[22] and DeepSEA [23], a tool that can assign pathogenicity to mutations across mutation classes remains
necessary. Our study also highlights the potential value of a single, comprehensive in silico variant
classification tool that displays high performance in predicting pathogenicity of mutations across solid
cancer types. Until these needs are met, clinicians should exercise caution with in silico tools when
evaluating actionable gene targets to aid their clinical decisions.

Conclusions
This study is the first to extensively evaluate in silico tool performance in multiple solid tumors with
actionable genetic targets. We show MutationTaster2021 as the highest-performing tool, outperforming
meta-predictor tools that have demonstrated superior performance in previous studies. Our results support
that in silico classification tools may offer valuable insights into confirming or ruling out pathogenicity of
VUS. However, they should be approached cautiously, acknowledging the substantial variability in
pathogenicity predictions.
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