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Abstract21

Background: Social and behavioral determinants of health (SBDH) are associated with a variety of health and utilization22

outcomes, yet these factors are not routinely documented in the structured fields of electronic health records (EHR). The23

objective of this study was to evaluate different machine learning approaches for detection of SBDH from the unstructured24

clinical notes in the EHR.25

Methods: Latent Semantic Indexing (LSI) was applied to 2,083,180 clinical notes corresponding to 46,146 patients in the26

MIMIC-III dataset. Using LSI, patients were ranked based on conceptual relevance to a set of keywords (lexicons) pertaining to27

15 different SBDH categories. For Generative Pretrained Transformer (GPT) models, API requests were made with a Python28

script to connect to the OpenAI services in Azure, using gpt-3.5-turbo-1106 and gpt-4-1106-preview models. Prediction of29

SBDH categories were performed using logistic regression model that included age, gender race and SBDH ICD-9 codes with a30

natural cubic spline of 2 degrees of freedom for age.31

Results: LSI retrieved patients according to 15 SBDH domains, with an overall average PPV ≥ 83%. Using manually curated32

gold standard (GS) sets for nine SBDH categories, the macro-F1 score of LSI (0.74) was better than ICD-9 (0.71) and GPT-3.533

(0.54), but lower than GPT-4 (0.80). Due to document size limitations, only a subset of the GS cases could be processed by34

GPT-3.5 (55.8%) and GPT-4 (94.2%), compared to LSI (100%). Using common GS subsets for nine different SBDH categories,35

the macro-F1 of ICD-9 combined with either LSI (mean 0.88, 95% CI 0.82-0.93), GPT-3.5 (0.86, 0.82-0.91) or GPT-4 (0.88,36

0.83-0.94) was not significantly different. After including age, gender, race and ICD-9 in a logistic regression model, the AUC37

for prediction of six out of the nine SBDH categories was higher for LSI compared to GPT-4.0.38

Conclusions: These results demonstrate that the LSI approach performs comparable to more recent large language models,39

such as GPT-3.5 and GPT-4.0, when using the same set of documents. Importantly, LSI is robust, deterministic, and does not40

have document-size limitations or cost implications, which make it more amenable to real-world applications in health systems.41

42

Background43

There is growing evidence that Social and Behavioral Determinants of Health (SBDH) are associated with44

a wide variety of health outcomes and that including SBDH data can improve prediction of health risks.1,245

While many studies focus on using neighborhood level SBDH indicators, evidence suggests that using46

individual-level SBDH significantly improves prediction of outcomes such as medication adherence, risk47

of hospitalization, HIV risk, suicide attempts, or the need for social work.1 In contrast, most studies that48

used external neighborhood-level data showed minimal contribution to individual risk prediction.1 Currently,49
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documentation of individual-level SBDH is sparse and incomplete in the structured fields within the EHR,350

but there are increasing efforts to implement screening tools in clinical workflow to document patient-level51

SBDH factors.4 However, screening tools add a significant burden on the healthcare staff at a time when52

provider burnout is a major concern.553

SBDH topics may arise during informal communications between the patient and healthcare provider, which54

are often documented in the clinical notes rather than the structured fields in the EHR.5 As an alternative55

strategy to screening questionnaires and diagnosis codes, several groups have evaluated SBDH documented56

in the clinical notes in the EHR. Navathe et al. reported that the highest rates of social characteristics were57

found in physician notes and that the frequency of six out of the seven social characteristics increased when58

comparing data from physician notes with billing codes.6 Similarly, in a larger study, Hatef et al. reported59

that the prevalence of SBDH in notes was vastly higher compared to billing codes for social isolation (2.59%60

vs 0.58%), housing issues (2.99% vs 0.19%), and financial strain (0.99% vs 0.06%).761

Recent work has focused on developing natural language processing (NLP) and machine learning approaches62

to extract or infer SBDH from clinical narratives.8,9 NLP approaches are rule-based and identify SBDH63

lexicons (keywords and/or phrases) using keyword matching or regular expressions. Identification of SBDH64

lexicons and NLP rules require considerable manual refinement.10,11 More recently, supervised machine65

learning approaches have been explored for identification of SBDH from notes, by combining a variety of66

embedding methods, such as bag-of-words, n-grams, wod2vec or Bi-directional Encoder Representation from67

Transformers (BERT), with supervised classification methods such as support vector machines, random68

forests, logistic regression, convolutional neural network and feed-forward neural network methods.8 More69

recent methods that combine transformer-based embeddings learned from large volumes of documents (Large70

Language Models, LLM) and deep learning classifiers have demonstrated superior performance in extracting71

SBDH from clinical notes.12–15 However, these models require training large amount of external data sources72

and fine-tuning using positive and negative gold standard cases. Thus, these approaches still require a73

considerable amount of manual effort for fine-tuning and may not be applicable to SBDH factors with74

low prevalence.9 Recent studies explored augmentation of low prevalence SBDH using simulated synthetic75

data and showed that fine-tuned Flan-T5 models outperformed zero-shot Generative Pretrained Transformer76

(GPT) models.1677

In this study, using the publicly available MIMIC-III dataset,17 we analyzed all clinical notes for over 46,00078

patients to identify 15 different SBDH categories using a well-known mathematical approach, called Latent79
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Semantic Indexing (LSI). Using a subset of gold standard patient documents, we compared the performance80

of LSI with more recent GPT models.81

Methods82

Latent Semantic Indexing83

The overview of our approach is shown in Figure 1.84

For each patient, a patient-document was created by concatenating the individual notes sequentially in85

the same order as present in the database. Terms (keywords) were extracted from patient documents86

using Text-to-Matrix Generator (TMG) package.18 Punctuation (excluding hyphens and underscores) and87

capitalization were ignored. Additionally, articles and other common, non-distinguishing words were filtered88

out using the SMART stop list.19 A term-by-patient matrix was created where the entries of the matrix89

were tf-idf weighted frequencies of terms across the patient document collection. Latent semantic indexing, a90

well-known factorization (Singular value decomposition) was performed on this matrix, subsequent to which91

each term and patient were represented as numeric vectors in reduced dimensions. The similarity between92

any two entities was calculated as the cosine between their respective vectors. The details of this process and93

various applications have been previously described by our group20–28 and are documented in Additional file94

1.95

A total of 15 SBDH categories were considered, inspired from Social Determinants of Health (SDoH) cat-96

egories defined by Torres et al.,29 and chronic behavior categories defined by the Center for Medicaid and97

Medicare Services (CMS).30 The representative keyword for each category was finalized after consultation98

with a group of care managers. Table 1 lists the categories and their representative keywords while Supple-99

mentary Table S1 in Additional file 1 also lists the available ICD-9 codes for 9 of the 15 categories. For each100

keyword, patients were ranked in descending order of the cosine similarity between their truncated vectors.101

Patients with cosine scores > Q3 + (3.0 ∗ IQR) were assigned to the respective SBDH category. The IQR102

(interquartile range) was calculated as Q3 (75th percentile) – Q1 (25th percentile).103

Generative Pretrained Transformers (GPT)104

All GPT API requests were made using a Python script which uses the ”openai” library to connect to the105

OpenAI services in Azure, using gpt-3.5-turbo-1106 and gpt-4-1106-preview models. The Azure OpenAI106
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Service is a secure enterprise utility that is fully controlled by Microsoft and does not interact with any107

services operated by OpenAI (e.g. ChatGPT, or the OpenAI API).31 Using this platform mitigated any108

potential risks to data sharing agreements or to patient privacy. Each API call included two components:109

1) A function definition for the SBDH category, and 2) The contents of a patient document. GPT identifies110

the presence of the SBDH category in a document based on the name of the function and parameter names,111

with no other domain-specific information provided to the API. Each SBDH domain had its own function112

definition in the format of a JSON object (Additional file 1). Below is an example function definition for113

”Housing Insecurity”:114

115

1 sbdh_function = {116

2 "name": "identify_housing_insecurity",117

3 "parameters": {118

4 "type": "object",119

5 "properties": {120

6 "housing_insecurity": {121

7 "type": "string",122

8 "enum": ["Yes", "No"]123

9 }124

10 }125

11 },126

12 "required": ["housing_insecurity"]127

13 }128
129

Sending a function ensures that the response from the API will be a predictable, well-formed JSON object130

with a binary answer of “Yes” or “No” to indicate the presence of the SBDH category in the patient document.131

The GPT engine does not actually call the function but instead treats the function like a callback, where132

the response from GPT includes the “Yes” or “No” value of the function parameter. The Python script calls133

the API as follows, including the patient document and the domain function as arguments:134

135

1 response = openai.ChatCompletion.create(136

2 engine = "gpt model name",137

3 messages = [{"role": "user", "content": "Contents of patient138

document here ..."}],139
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4 functions = [sbdh_function],140

5 function_call = {"name": "identify_housing_insecurity"},141

6 temperature = .01142

7 )143
144

The ”temperature” argument controls the determinism of the GPT model, accepting a value between 0145

(more deterministic) and 2 (less deterministic). The API call and SBDH function definitions are identical146

for GPT-3.5 and GPT-4. All prompts were zero-shot, with no fine-tuning examples provided in the prompt.147

Analysis and Evaluation148

The patient rankings pertaining to each SBDH keyword query was evaluated manually by chart review149

to determine the positive predictive value (PPV) of the top 10, median 10 and last 10 ranked. SBDH150

classification performance was evaluated using precision, recall and F1 score on manually curated gold151

standard (GS) samples. A random sample of up to 20 ICD-9 coded (when applicable) and up to 20 LSI-152

predicted cases were balanced with an equal number of non-coded and non LSI-predicted cases for each of153

the nine SBDH categories (that had at least six ICD-9 coded patients). This resulted in random samples154

ranging from 46 (financial circumstances) to a maximum of 80 (Tobacco use, Alcohol abuse and Opiate155

abuse). All cases were manually evaluated by chart review to determine actual positive (P) and negative (N)156

cases. Supplementary Table S3 in Additional file 1 includes the summary characteristics of the GS samples157

for each SBDH category. The performance of the text-based approaches was evaluated by Precision, Recall158

and F1 score.159

To determine the overall performance of the text-based predictions using either LSI or GPT-4 in addition160

to ICD-9 coding, we used a logistic regression model including age, gender, race and ICD-9 for binary161

classification of GS patients corresponding to each SBDH category. In all three models, age was fit using162

a cubic spline with 2 degrees of freedom. The performance of each model was evaluated by 10-fold cross-163

validation and the Area Under the Receiver Operating Curve (AUROC).164

Results165

A number of previous studies have demonstrated that International Disease Classification (ICD) codes cor-166

responding to social and behavioral determinants of health are not commonly used in the EHR.7 Similarly,167
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analysis of the MIMIC-III dataset showed that out of 44 potential Social Determinants of Health (SDoH)168

ICD-9 codes,29 only 17 were used in MIMIC-III and only nine SDoH categories were assigned to three or169

more patients (Supplementary Figure S1 in Additional file 1). To develop a comprehensive set of SBDH for170

benchmarking the text-based approaches, we included the following SDoH categories in order of frequency:171

Lack of housing (202), history of physical abuse (37), unemployment (15), legal circumstances (13), inade-172

quate material resources (6). In addition, we included four behavioral chronic conditions defined by CMS30
173

and several other SBDH categories such as suicide ideation and compliance, which are represented in ICD-10174

but not in ICD-9. Altogether, this study focused on 15 SBDH categories (Table 1), although only nine175

categories were documented by ICD-9 billing codes in this data set (Supplementary Table S1 in Additional176

file 1).177

Table 1: Performance of LSI predictions of SDBH categories. The terms in parentheses indicate the query
word used to rank all patients in the dataset.

PPV of LSI Predictions

SBDH Category (Keyword Query) ICD Coded N Predicted N Top 10 Median 10 Bottom 10 Average

Tobacco use disorder (Smokes) 3005 2195 100% 90% 80% 90%
Alcohol abuse (EtOH) 2988 1080 100% 100% 100% 100%
Drug abuse (Opiate) 672 444 100% 60% 50% 70%
Drug abuse (Cocaine) 545 1852 100% 70% 40% 70%
Housing insecurity (Homeless) 202 470 100% 80% 70% 83%
Physical/Sexual abuse (Abused) 37 121 80% 50% 30% 53%
Financial insecurity (Unemployed) 15 809 100% 90% 100% 97%
Legal Circumstances (Legal) 13 1052 80% 50% 20% 50%
Financial circumstances (Financial) 6 402 100% 60% 90% 83%
Compliance (Noncompliant) 0 402 100% 100% 90% 97%
Mobility issues (Walker) 0 3235 90% 100% 90% 93%
Lack of English proficiency (Interpreter) 0 1621 100% 90% 80% 90%
Caregiver dependency (Caretaker) 0 443 100% 90% 60% 83%
Suicidal ideation (Suicide) 0 1090 100% 60% 40% 67%
Lack of transportation (Transportation) 0 452 60% 70% 70% 67%

Latent Semantic Indexing and Lexicon Development178

Latent Semantic Indexing (LSI) is a well-known matrix factorization method, which reduces the dimension-179

ality of terms and documents in to lower rank matrices.20–28 By using a lower rank matrix, the terms can180

be grouped together more conceptually, whereas by using higher ranks, terms can be grouped more literally.181

In addition, patients can be grouped together in more conceptual or literal fashion based on the content in182

their clinical notes.183

Out of a total of 46,520 patients in the MIMIC-III dataset, 46,146 patients had clinical notes. The number184
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of notes associated with these patients ranged from 1 to 1420, with the median being 21 notes. A patient185

document was constructed by concatenating all clinical notes together for each patient, which resulted in a186

term dictionary of >300,000 terms. To reduce the dictionary size to terms that are relevant to SBDH, we187

filtered the dictionary to include only terms that were extracted from social history sections, resulting in a188

final dictionary size of 26,237 terms. Each term in the 26,237 terms-by- 46,146 patients matrix was weighted189

using tf-idf and then factorized to 12,723 dimensions (see Additional file 1 for details).190

To determine the best lexicons (terms) to represent various SBDH categories, we manually constructed a set191

of 134 keywords (including variants, plurals and common misspellings) corresponding to the SBDH categories192

described above (Supplementary Table S2 in Additional file 1). Both the SBDH categories and the lexicons193

were iteratively refined as described below based on: 1) The correlations between terms with respect to the194

vector of all ranked patients in the MIMIC-III dataset (Figure 2a), 2) the precision of the top ranked patients195

for the keyword query, 3) the recall of ICD-9 coded patients.196

Clustering of the term correlations revealed groups of highly synonymous terms deduced from the word usage197

patterns in the patient documents. This demonstrates the utility of matrix factorization as an unsupervised198

machine learning approach which learns conceptually related terms based on the word usage patterns in the199

clinical notes. For example, factorization revealed that words such as intoxicated/intoxication, crack/cocaine,200

or manic/mania are synonymously used in the clinical notes (Figure 2b). In addition, this approach identified201

short phrases in a rudimentary way, such as legal/guardian (Figure 2b). Lastly, some of the larger clusters202

included broader contextual information, such as suicide/overdose/psych/suicidal/psychiatrist (Figure 2c).203

Evaluation of LSI-derived SBDH Predictions204

All patients in the collection were ranked based on a representative keyword query for each of the 15 SBDH205

categories. Application of interquartile outlier detection method determined the cosine threshold for each206

query where the patients ranked above the threshold (> Q3 + (3.0 ∗ IQR)) are highly associated with the207

query and thus predicted to have the specific SBDH. In all but three SBDH categories (Tobacco use, Alcohol208

abuse, and Drug abuse - Opiate), the number of patients in the collection with an LSI-predicted SBDH were209

substantially higher than the ICD-9 coded patients (Table 1).210

To evaluate the classification performance of the SBDH predictions, we determined the PPV by manual211

evaluation of the top 10, median 10, and bottom 10 patients within the cut-off threshold (Table 1). In all212

but four SBDH categories, the PPV of the top 10 ranked patients was 100%. As expected, the PPV decreased213
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with lower rankings. The average PPV for all 15 SBDH categories ranged from 50% (legal circumstances)214

to 100% (alcohol abuse), with nine of the SBDH categories having a PPV ≥ 83%.215

Next, we compared the performance of ICD-9 coding with either LSI, GPT-3.5 or GPT-4 large language216

models using different sets of gold standard (GS) patients that were randomly selected for each SBDH217

category and manually labeled by chart review. The characteristics of the GS sets of patients for each SBDH218

category are provided in Supplementary Table S3 in Additional file 1. Only nine SBDH categories that had219

at least six ICD-9 coded patients were included in this analysis. Importantly, only LSI was able to process220

all of the patient documents. In contrast, due to context window size restrictions, GPT-3.5 processed 55.6%221

of the gold standard documents and GPT-4 processed 94.2% (Figure 3).222

Earlier versions of GPT were highly irreproducible such that the same prompt could produce different223

responses or no response at all. To evaluate this phenomenon, we compared the responsiveness of GPT-224

3.5 and GPT-4 to the same set of shared documents within the 16K context window limit of GPT-3.5 for225

each of the nine SBDH categories (Table 2). For GPT-3.5, the same set of documents were submitted226

using the same prompt five independent times. GPT-3.5 was unresponsive for 2% (Cocaine use) to 30%227

(unemployed) of the patient documents across the SBDH categories. In addition, in all but one SBDH228

category, GPT-3.5 provided conflicting responses between the five independent prompts. For example,229

although GPT3.5 provided responses for all 27 patient documents related to legal circumstances, it provided230

conflicting responses for six (22%) of the patient documents (Table 2). In contrast, GPT-4 was unresponsive231

for only two documents (3.8%) in only one SBDH category (tobacco use).232

Table 2: Unresponsiveness of GPT-3.5 and GPT-4. On a set of shared patient documents (N), GPT-3.5
was prompted five independent times, whereas GPT-4 was prompted only once. The % of documents where
GPT-3.5 or GPT-4 did not provide a response is iindicated for each SBDH category. The % disagreement
corresponds to the number of documents where GPT-3.5 provided conflicting binary responses.

GPT-3.5 GPT-4

SBDH Category N % Disagreement % No Response % No Response

Housing insecurity 48 6.3% 0.0% 0.0%
Tobacco use 52 3.8% 15.4% 3.8%
Opiate abuse 42 7.1% 0.0% 0.0%
Alcohol abuse 41 2.4% 0.0% 0.0%
Cocaine use 51 0.0% 2.0% 0.0%
Physical & sexual abuse 39 2.6% 5.1% 0.0%
Unemployed 30 6.7% 30.0% 0.0%
Legal circumstances 27 22.2% 0.0% 0.0%
Financial circumstances 22 13.6% 4.5% 0.0%

As expected, due to the limitations described above, the average recall of GPT-3.5 across all of the documents233
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in all nine SBDH categories was low (0.41), compared to LSI (0.70) and GPT-4 (0.77) (Table 3). Overall,234

the average macro-F1 was highest for GPT-4 (0.8), followed by LSI (0.74), ICD-9 (0.71) and GPT-3.5 (0.54)235

despite the fact that GPT-4 was unable to process 5.8% of the documents due to context window size236

limitations (Figure 3 & Table 3).237

It is important to note that in some cases, although a patient was assigned an ICD-9 code for a particular238

SBDH, supporting documentation in the clinical notes could not be found. In such cases, the ICD-9 coded239

individuals were assumed to be actual positives. Therefore, to retrieve all possible SBDH in a given GS240

set, the text-based prediction of SBDH was combined with ICD coded individuals across the nine SBDH241

categories. On average, all three methods performed similarly with respect to precision, recall and F1 when242

combined with ICD-9 (Figure 4).243

Lastly, to evaluate the overall predictive performance of LSI with GPT-4 when combined with ICD-9 coding,244

we compared the prediction AUC of three different logistic regression models: 1) base model including245

gender, age, race and SBDH ICD-9 codes, 2) base model plus LSI identified SBDH, 3) base model plus246

GPT-4 identified SBDH (Figure 5). Using only ICD-9 coding (base model), the AUCs for the nine SBDH247

categories ranged between 0.69 (housing insecurity and financial circumstances) to 0.85 (history of physical248

and sexual abuse). In all nine categories, inclusion of LSI or GPT-4 improved the AUCs compared to249

ICD-9. Interestingly, LSI outperformed GPT-4 in six of the nine SBDH categories (housing insecurity,250

unemployment, opiate abuse, alcohol abuse, legal circumstances, and financial circumstances).251
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Discussion252

In this study, we demonstrated the utility of LSI as a robust unsupervised approach for comprehensively253

processing all clinical notes in the EHR to identify SBDH and to supplement the SBDH documented by254

ICD-9 diagnosis codes. Importantly, we show that although LSI is a bag-of-words approach, it performed255

similarly and sometimes better than GPT models. This work highlights several advantages for using LSI in256

real-world healthcare applications.257

One major advantage of LSI is its ability to process all of the notes for a given patient without the imposed258

context window token size limitations of GPT. As pointed out in Figure 3, only 55.6% and 94.2% of the259

GS cases could be processed by GPT-3.5 and GPT-4, respectively. At the time of our analysis, the input260

context window size limits for GPT-3.5 and GPT-4 were 16K and 128K tokens, respectively. However,261

other LLMs may have larger context windows. Even with the context window limits, it is possible to262

process larger documents by ‘chunking’, a method where a large document is split into smaller overlapping263

documents that are smaller than the token limits. In our analysis, we did not attempt to process all of the264

GS documents, instead we directly compared the performance of LSI with GPT-3.5 and GPT-4 using the265

same set of documents (Table 3 and Figures 4 & 5). Another reason for limiting the analysis to a subset of266

GS documents was cost. At the time of the analysis, the cost for GPT-3.5 and GPT-4 using the Microsoft267

Azure OpenAI31 services per query was USD $0.001 and $0.01 per 1K input tokens, respectively. Thus,268

it would have been more costly to chunk the larger GS documents. Another way to reduce the number of269

GPT queries would have been to perform multi-class labeling. In our analysis, we performed single class270

labeling, where each document was processed individually to identify a single SBDH category. Although this271

approach would be useful, it may require considerable fine-tuning and may not be feasible for identifying all272

15 SBDH categories at once.273

Another major advantage of LSI is that it does not require external training on a large dataset and fine-274

tuning for domain specific applications. For this study, the LSI model was built using all of the clinical275

notes for all of the > 46, 000 patients at once. In contrast, GPT and other LLM require extensive training276

using large amounts of external data sources. For example, GPT 3.5 was trained on 175 billion parameters277

using training data up to September 2021. Although the models perform well for general text analysis,278

they may not perform well on specialized clinical tasks. For example, Lybarger et al. developed an event279

based deep-learning extractor for SBDH that determines chronicity, duration, frequency and type of event.12280

However, their models apply only to a subset of SBDH categories, including employment, living status, as281
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well as alcohol, tobacco and drug use. They point out that training these models required significant manual282

effort by human experts to develop both positive and negative gold standard datasets for fine-tuning.12 In283

addition, since these methods require large amounts of training data for fine-tuning, they can have limited284

usefulness for SBDH categories that are rare (low prevalence).285

Another major advantage of LSI is that, unlike GPT, it is deterministic (reproducible) and 100% responsive286

to all queries. For a given factorization rank, LSI produces the same exact ranking of the documents based287

on the same query. On the other hand, we showed (Table 2) that GPT-3.5 produces conflicting responses to288

the same prompt on the same set of documents. Moreover, we demonstrated that both GPT-3.5 and GPT-4289

may not respond, a phenomenon commonly referred to as ‘laziness’. Although the GPT-4 model has been290

improved to reduce laziness, we found that it can be unresponsive as the document size reaches its maximum291

context window size limits.292

Our findings indicate that using clinical notes to identify SBDH should not replace efforts in health systems293

to screen for SBDH, rather provide a complementary approach to enhance estimates of the SBDH burden294

(prevalence) in large populations. During chart review for developing the GS sets, we found a few ICD-9295

coded individuals who had no supporting documentation for the codes. For example, some patients had296

few encounters with the health system and had no social history notes, yet were coded for homelessness or297

alcohol abuse. As reported by others, this observation illustrates the importance of combining the information298

provided by ICD-9 codes and other structured data (e.g., questionnaires) with unstructured data in the EHR299

to obtain a more representative assessment of the SBDH prevalence in a population.7,10–12,32 On the other300

hand, implementing SDoH screening tools across a large health system is impractical and potentially biased.301

Studies have shown that SDoH screening forms are primarily implemented in outpatient and primary care302

settings. However, it is thought that socioeconomically disadvantaged individuals are less likely to go to303

primary care, instead use the emergency department (ED) for their healthcare needs.33 Moreover, a recent304

study demonstrated that only 3.7% of the patients in a large health care system in South Carolina had305

answered all 11 questions on the SDoH screening forms.34 Therefore, for better assessment of SBDH burden306

in a population, information must be aggregated from a variety of sources in the EHR, including the clinical307

notes.308

It is worth highlighting that the costs associated with OpenAI services make it currently unrealistic to309

implement in health systems to assess SBDH burden in large populations of patients. To address this issue,310

future research will focus on using LSI to narrow large populations of patients into smaller groups that311
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are conceptually predicted to have SBDH and then process those documents using GPT to contextualize312

and validate the LSI predictions. Factorization provides value beyond keyword searching alone because it313

contextualizes keywords as vectors in reduced ranked space, thereby grouping words that are frequently used314

together in the context of SBDH keywords. This approach provides a general advantage by automatically315

grouping synonyms, misspellings, and conceptually related terms that are often used together in narratives316

(Figure 2). For example, a homeless individual is often unemployed and has drug/alcohol abuse problems.317

Also, factorization is able to infer that ‘shelter’ and ‘homelessness’ are synonymously used in the narratives.318

By lowering the rank of the factorized matrix, one can identify a subset of patients who are conceptually319

related to the SBDH, achieving higher recall than precision. By subsequently processing these patient320

documents with GPT-4, the specific evidence in support of the SBDH can be readily deduced while keeping321

the overall processing cost low.322

While LSI was highly sensitive (high PPV) for most SBDH categories, its performance was limited for323

a few SBDH categories such as legal circumstances. We found that legal circumstances covered a broad324

range of areas ranging from power of attorney, guardianship issues, hospital liability to encounters with325

law enforcement for illegal activities. More refinement would be necessary to evaluate the performance of326

our approach on specific areas pertaining to specific legal circumstances. For example, guardianship issues327

for clinical decision making could be better identified with a ‘guardian’ query rather than a general term328

such as ‘legal’. In three cases (alcohol abuse, tobacco use, and opiate abuse), our approach identified fewer329

cases than ICD coded individuals. This may be due to the fact that drug, alcohol and tobacco use are330

routinely captured within structured fields in current clinical practice. However, other SBDH categories are331

not routinely captured. One approach to increase the number of cases identified by our approach would be332

to relax the thresholding parameter or to combine multiple lexicons representing alcohol abuse in an additive333

way.334

Feller et al. were among the first groups to apply NLP methods to infer SBDH from clinical notes. After335

feature selection, they included 2-4,000 individual words as independent variables in various machine learning336

classifiers to identify sexual history, sexual orientation, alcohol use, substance use and housing status. They337

found that combining clinical notes and structured data enabled reasonably accurate inference of these SBDH338

categories.35,36 Bejan et al., using a vector embedding approach to expand SDoH lexicons, demonstrated339

better performance of identification of homelessness and adverse childhood experiences (ACEs) from clinical340

notes.37 Our process, which combines the bag-of-words approach with factorization for embedding, allows341
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an automated method to identify a broad set of SBDH categories.342

The LSI approach has several limitations. First, it is a bag-of-words embedding technique, which does not343

account for word context (phrases) and negated terms. In addition, the performance of our approach was344

affected by the presence of forms and templated text in the clinical notes, such as “Family Information” or345

social history forms, where there are many negations and repeated text. The performance of our approach346

would improve if certain note types, forms and templates were removed during pre-processing. Lastly, our347

approach does not provide temporal relations and event-types. As stated above, many of these limitations348

would be addressed by combining the advantages of LSI (e.g., robustness, determinism, and no cost) with349

the advantages of LLM (i.e., contextualization, removal of negation, and multi-label classification).350

Conclusions351

In this study, we demonstrated that using an unsupervised machine learning factorization approach on352

clinical notes is a robust way to enhance SBDH identification from the EHR. This work is significant because353

it provides an automated way to extract SBDH for patients in a health system without the additional burden354

of implementing standardized surveys in clinical workflows. By providing better estimates of SBDH burden355

in populations, this work sets the stage for developing patient level health risk and utilization prediction356

models that incorporate SBDH factors in addition to standard clinical and structured data from the EHR.357
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Figure 1: Workflow diagram of extracting and assigning SBDH factors to each patient in
MIMIC-III dataset.
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Figure 3: Proportion of gold standard patient documents for each SBDH category that yielded
results by LSI, GPT-3.5 or GPT-4.0.
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Figure 4: Retrieval performance of LSI, GPT-3.5 or GPT-4 when combined with ICD-9 coding.
Precision (upper panel), recall (middle panel) and F1 (lower panel) of ICD-9 combined with either LSI
(orange lines), GPT-3.5 (cyan lines) and GPT-4 (blue lines). Values represent the mean (filled circle) and
95% confidence intervals (error bars) across the nine SBDH gold standard sets.
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Figure 5: Comparison of classification performance of ICD-9 and/or text-predicted SBDH cat-
egories using multivariable analysis. The AUC is shown for three different models: 1) Base model
including age, gender and ICD-9 codes (black lines), 2) Base model plus LSI identified SBDH (red lines),
and 3) Base model plus GPT-4 identified SBDH (blue lines).
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