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Abstract 15 

Considerable spatial heterogeneity has been observed in COVID-19 transmission across 16 

administrative regions of England throughout the pandemic. This study investigates what 17 

drives these differences. We constructed a probabilistic case count model for 306 18 

administrative regions of England across 95 weeks, fit using a Bayesian evidence synthesis 19 

framework. We include the mechanistic impact of acquired immunity, of spatial exportation of 20 

cases, and 16 spatially-varying socio-economic, socio-demographic, health, and mobility 21 

variables. Model comparison assesses the relative contributions of these respective 22 

mechanisms. We find that regionally-varying and time-varying differences in week-to-week 23 

transmission were definitively associated with differences in: time spent at home, variant-of-24 

concern proportion, and adult social care funding. However, model comparison 25 

demonstrates that the mechanistic impact of these terms was of negligible impact compared 26 

to the role of spatial exportation between regions. While these results confirm the impact of 27 

some, but not all, measures of regional inequity in England, our work corroborates the 28 

finding that observed differences in regional disease transmission during the pandemic were 29 

predominantly driven by underlying epidemiological factors rather than the demography and 30 

health inequity between regions. 31 

Author Summary 32 

During the COVID-19 pandemic, different geographic areas of England saw different 33 

patterns in the number of confirmed cases over time. This study investigated whether 34 

demographic differences between these areas (such as the amount of deprivation, the age 35 

and ethnicity of the populations, or differences in where people spent their time) were linked 36 

to these differences in disease transmission. We also considered whether this was 37 

associated with the number of cases in neighbouring areas as well. Using a mathematical 38 

model fit to multiple data streams, we discovered that a statistically significant link between 39 

some demographic variables (time spent at home, COVID-19 variant, and the amount of 40 

adult social care funding) and week-to-week transmission exists, but this relationship is very 41 

small, and the influence of cases in neighbouring areas was far more impactful in explaining 42 

differences in transmission between areas over time.  43 
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Introduction 44 

During the COVID-19 pandemic, measures of deprivation have been identified as impacting 45 

health outcomes, with more deprived regions reporting higher COVID-19 attributed mortality, 46 

both in England1 and globally2. Less well-understood is the impact these measures have on 47 

disease incidence – confirmed cases. Descriptive studies early in the pandemic identified 48 

that English regions with a higher Index of Multiple Deprivation (IMD) reported more cases of 49 

COVID-19 than those with lower IMD scores3,4  during the first wave of disease incidence in 50 

2020. However, such patterns do not persist throughout the entire epidemic, and for some 51 

periods the opposite trend can now be observed (Figure 1B).  52 

England is divided into Lower Tier Local Authorities (LTLA) – areas of social service 53 

provisioning (see Supplementary Material 1.1). For these different areas, data is available on 54 

the socio-demographic makeup – the average age, ethnic population proportions, population 55 

density; on socio-economic metrics – median earnings, employment, education; and 56 

epidemiological data throughout the pandemic – daily new cases, variant proportions, 57 

COVID-19 support funding allocated, and mobility data recording time spent at different 58 

locations. These variables vary greatly across LTLAs, and similarly disease incidence and 59 

rates of infection have varied across LTLAs during the pandemic5. Figure 1 demonstrates 60 

spatial variation in two covariates of interest, and mean per capita weekly incidence of 61 

COVID-19 stratified by these variables (see Supplementary Material 1.6 for plots of other 62 

covariates). Some variables change weekly (community mobility, variant proportion), others 63 

change annually (funding allocation, income), while others are fixed by LTLA for the entire 64 

duration. 65 

Recognising the variation in disease incidence across administrative regions, the UK 66 

government briefly implemented a tiered lockdown system on October 14th 20206, where 67 

more stringent rules on social mixing were applied to areas of the country with a greater 68 

incidence of COVID-19. This system was retired the following month for a second nationwide 69 

stay-at-home order. It remains unclear as to whether these observed epidemiological 70 

differences can be explained solely by spatial drivers of disease spread, or whether the 71 

intrinsic factors associated with each LTLA influenced the epidemic trajectory in each 72 

respective LTLA. Hypothetically, for example, populations in wealthier LTLAs may have 73 

been more able to work from home, or may have had more access to space to self-isolate in. 74 

LTLAs with a higher proportion of elderly residents may have been more susceptible to 75 

infection, or may have seen less social mixing. LTLAs that received more COVID-19 support 76 

funding per head, may have subsequently achieved better disease suppression. 77 

Here, we model the number of weekly pillar 2 (general population testing) PCR-confirmed 78 

COVID-19 cases in 306 English LTLAs, for 95 weeks, from the week beginning May 10th 79 

2020 to the week beginning February 27th 2022. We assume the number of weekly cases in 80 

an LTLA is determined by the previous week’s number of cases, plus a proportion of 81 

imported infections from adjacent LTLAs controlled by a model parameter. Additional model 82 

parameters then control the relative influence of 16 socio-economic and -demographic 83 

variables, and time- and LTLA- varying terms on the observed increases and decreases in 84 

cases. Model parameters are fit to English COVID-19 surveillance data by LTLA through a 85 

Bayesian evidence synthesis framework. 86 

Real-time modelling studies provided valuable insights and projections into key 87 

epidemiological parameters throughout the pandemic7, through regular reports integrating 88 

the latest epidemiological data. In this study we investigate how the composition of a 89 

population, and population-level covariates, contributes to week-to-week transmission 90 
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potential. Identification of such contributions would inform whether real-time-modelling efforts 91 

could be improved in the future by integrating such socio-economic and -demographic data. 92 

 93 

 94 

 95 

Figure 1: Variation in socio-demographic factors by LTLA, and the respective differences in average per capita 96 
incidence of COVID-19 cases when stratified by these socio-demographic factors. (A/C) Plots depict how IMD 97 
and White British population proportion vary across the 306 English LTLAs we consider. (B/D) The 306 98 
considered LTLAs are partitioned into quintiles (blue being the lowest values quintile and red the highest values 99 
quintile) based on their (B) IMD scores and (D) White British population proportion respectively. Lines display the 100 
mean per capita weekly incidence of COVID-19 across all LTLAs in each quintile. Shaded regions depict the 95% 101 
quantiles. Quintile binning in plots B/D is for illustrative purposes - model fitting is performed to the continuous 102 
measures presented in plots A/C. Boundary source: Office for National Statistics licensed under the Open 103 
Government Licence v.3.0 29. Contains OS data © Crown copyright and database right [2024]. 104 

 105 

 106 
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 107 

Results 108 

Model fit 109 

The model successfully captured the variation in LTLA-specific epidemic trajectories. Figure 110 

2A sums the model fit across all 306 LTLAs, while plots 2B and 2C show the model fit, for 111 

example, to the two LTLAs with the greatest variation in their epidemic trajectory as 112 

assessed via dynamic time warping (DTW) distance8 (a metric for analysing similarity in time 113 

series data). All LTLAs see broadly three principle epidemic waves, initiated by the 114 

emergence of the Alpha, Delta, and Omicron variants respectively. 115 

 116 

 117 

Figure 2: Model fit to data, at national level and two LTLAs as examples. (A) The number of weekly new COVID-118 
19 cases in England, summing the model fit across all 306 LTLAs. (B/C) The per capita weekly incidence of 119 
COVID-19 in two specific LTLAs with greatly different epidemic trajectories. Black dots show data and the blue 120 
line represents mean model fit. Shaded blue regions depicts the 95% credible interval (CrI). Dashed lines 121 
represent significant changes in nationwide non-pharmaceutical interventions imposed9. As shaded in the top 122 
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bar, red areas depict times of full “stay-at-home” orders, orange depicts partial restrictions on social mixing, green 123 
depicts no barriers to social mixing. 124 

The effective reproduction number, 𝑅𝑖,𝑡
𝑒𝑓𝑓

, is an epidemiological parameter dictating the 125 

number of secondary infections caused by a primary infection in LTLA 𝑖 at week 𝑡. Hence, 126 

when 𝑅𝑖,𝑡
𝑒𝑓𝑓

> 1, cases are observed to increase in LTLA 𝑖 at week 𝑡. Likewise, when 𝑅𝑖,𝑡
𝑒𝑓𝑓

<127 

1, cases are observed to decrease. Our model assumes that 𝑅𝑖,𝑡
𝑒𝑓𝑓

is made up of three 128 

principle elements. First, a time-varying random walk term, 𝑧𝑡, observed across all LTLAs, 129 

capturing the impact of multiple time-varying factors such as changes to non-pharmaceutical 130 

interventions (NPIs), vaccination uptake, school closures, and national holidays. Second, an 131 

LTLA-varying error term, 𝜃𝑖, to capture any unexplained intrinsic differences between the 132 

reproduction number across LTLAs. Third, a term capturing the impact of 16 covariates of 133 

interest – data compiled from multiple sources (see Section 1 of the Supplementary Material) 134 

capturing: the population ethnicity proportions, the index of multiple deprivation (IMD) 135 

scores, the population age proportions, the population densities, the median annual 136 

incomes, the time spent at certain locations, the proportion of new COVID-19 variants, and 137 

the amount of COVID-19 funding allocated, across all 306 LTLAs considered. The impact of 138 

these variables is captured in the term 𝑥𝑖,𝑡  𝛽, where 𝑥𝑖,𝑡 represents the 16 covariates 139 

introduced above for LTLA 𝑖 at week 𝑡, and 𝛽 is a model parameter of coefficients controlling 140 

the relative contributions of each of the 16 covariates. 141 

Figure 3 shows the mean and 95% CrI of the posterior distributions for these covariate 142 

coefficients (parameter 𝛽 above). Model covariates (𝑥𝑖,𝑡) were standardised to have mean 0 143 

and standard deviation 1 before model fitting to enable comparison of relative covariate 144 

coefficients.  145 
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 146 

Figure 3: Posterior estimates of all covariate coefficients (parameter 𝛽). These values are separated into three 147 
categories: those capturing population effects, those capturing variants-of-concern, and those capturing funding 148 
allocations. Black dots represent the mean estimate, black lines the 95% CrI. The dashed grey line marks 0. A 149 
positive value indicates that the effective reproduction number increases with higher values of the associated 150 
covariate, a negative value indicates that the effective reproduction number decreases with higher values of the 151 
associated covariate. 152 

 153 

Unsurprisingly, the time spent at home was the strongest covariate effect (outside of COVID-154 

19 variant) in determining changes to transmission. LTLAs and weeks where populations 155 

spent more time in residential areas saw reduced effective reproduction numbers. Similarly, 156 

LTLA-weeks with more visits to (non-home) workplaces saw increased reproduction 157 

numbers. Additionally, the LTLAs with greater allocations of Adult Social Care (ASC) 158 

infection control funding per head saw reduced reproduction numbers.  159 
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Each new variant was associated with a sequential increase in the reproduction number, in 160 

alignment with similar studies into the transmission potential of each variant10. 161 

Our analyses suggested there was no statistically significant impact on the effective 162 

reproduction number by population ethnicity proportions, IMD, population proportion over the 163 

age of 65, population density, median annual income, visits to transit stations, un-ringfenced 164 

funding or Contain Outbreak Management Fund (COMF) funding allocated – all these 165 

coefficients’ 95% CrI overlaps 0 in Figure 3. 166 

Our model also assumes that the number of weekly cases in an LTLA is not just driven by 167 

the previous weekly number of cases in that LTLA, but that some new infections can be 168 

triggered by infections in adjacent LTLAs. This is a process known as spatial exportation, 169 

whereby a primary case in one LTLA may visit a neighbouring LTLA, and subsequently 170 

cause a secondary infection outside of their home boundaries. We assume that the 171 

proportion of spatial importations varies by LTLA, as some areas, like city centres, may 172 

attract more visitors than other, more rural, LTLAs. The model parameter 𝜁𝑖 is defined as the 173 

proportion of all weekly cases in adjacent LTLAs that contribute secondary infections each 174 

week in LTLA 𝑖. 175 

Figure 4 shows the impact of all other model variables that contribute to the effective 176 

reproduction number – the proportion of case importations from neighbouring LTLAs, 𝜁𝑖, 177 

(median value 0.134, interquartile range (IQR) 0.069 – 0.247) the LTLA-varying error terms  178 

𝜃𝑖 (median value 0.028, IQR -0.159 – 0.222), and the time-varying random walk trajectory, 179 

𝑧𝑡(median value -0.489, IQR -0.871 - -0.243). Figure 4A shows that the majority of LTLAs 180 

imported only a small proportion of cases from neighbouring LTLAs - LTLAs shaded in blue 181 

saw less than 20% of the total cases in LTLAs they share a border with causing onwards 182 

infections within their own boundaries. Denser populated LTLAs like city centres have higher 183 

𝜁𝑖 values in general, (areas shaded red in Figure 4A) demonstrating the increased 184 

transmission risk caused by individuals travelling into population centres from more rural 185 

LTLAs. The greatest contribution of the three terms comprising our 𝑅𝑖,𝑡
𝑒𝑓𝑓

 is thus the random 186 

walk term, followed by the covariate impacts and LTLA-specific error term 𝜃𝑖. 187 

 188 
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 189 

Figure 4: Model variables contributing to the LTLA-varying and week-varying effective reproduction number. (A) 190 
Estimates of the LTLA-varying parameter 𝜁𝑖, denoting what proportion of the cases in adjacent LTLAs cause 191 
secondary cases in LTLA i the following week. (B) The remaining spatial error term, 𝜃𝑖, capturing underlying 192 
differences in LTLA reproduction numbers not explained by the sixteen considered covariates (𝑥𝑖,𝑡−1 𝛽). (C) The 193 
random walk term applied to all LTLAs capturing a baseline time-varying change to the reproduction number. 194 
Solid line shows the mean estimate and the shaded region the 95% CrI. Dashed lines and shaded bar at the top 195 
of the plot again mark areas of full (red), partial (orange) and no (green) stay-at-home orders. Boundary source: 196 
Office for National Statistics licensed under the Open Government Licence v.3.0 29. Contains OS data © Crown 197 
copyright and database right [2024]. 198 

Figure 4B shows the spatial variation in the reproduction number that is not explained by the 199 

16 covariates (𝑥𝑖,𝑡−1). The apparent clustering of higher and lower 𝜃𝑖 values suggests this 200 

pattern may not simply be noise, but that there could be spatial variables yet to be identified 201 

that may also be influencing the transmission of COVID-19 across LTLAs in England.  202 

Figure 4C shows the random walk trajectory over time. There are multiple time-varying 203 

aspects that will have influenced the epidemic in England. We specifically include COVID-19 204 

variant proportions, and our mobility covariates have been shown to capture the influence of 205 

NPIs over time11. Figure 4C demonstrates a gradual decrease in the background effective 206 

reproduction number for all LTLAs, in line with the uptake in vaccination and changes in 207 

behaviour. 208 

 209 
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 210 

Model Comparison 211 

To assess the relative contribution of each of these modelled mechanisms towards 212 

improving model fit, the model is fit multiple times with some mechanisms removed.  213 

Alongside the main analysis (MA) presented above, where all model terms are included, 214 

three additional sensitivity analyses are presented: (SA1) we fit the model without any 215 

covariates included – i.e. 𝛽 is hard-coded to 0, (SA2)  we fit the model with no spatial 216 

exportation included (but covariates are still included) – i.e. 𝜁𝑖 is hard-coded to 0, (SA3) we 217 

fit the model with no spatial exportation or covariates included – i.e. both 𝛽  and 𝜁𝑖 are fixed 218 

at 0.  𝜃𝑖 and 𝑧𝑡 remain in all three sensitivities. 219 

Model comparison is performed using the expected log pointwise predictive density (elpd) 220 

metric under a “leave future out” (LFO) cross-validation scheme, detailed in section 4.2 of 221 

the Supplementary Material. elpd (LFO) assesses the relative goodness of fit and predictive 222 

performance of different model versions by evaluating each model's ability to predict held-223 

out future sections of the time series. Higher elpd (LFO) values (lower magnitude) indicate 224 

better model performance. 225 

The elpd (LFO) values for the main analysis (MA) and three sensitivity analyses (SA1-3) are 226 

shown in Table 1 below. A greater elpd (LFO) value suggests a better model fit. 227 

Model Formulation elpd (LFO) value (point 
estimate / standard error) 

(MA) Spatial importation included, covariates included.  -81,006 (SE 505) 
(SA1) Spatial importation included, covariates excluded.  -81,124 (SE 502) 
(SA2) Spatial importation excluded, covariates included.  -83,945 (SE 667) 
(SA3) Spatial importation excluded, covariates excluded.  -84,018 (SE 666) 

Table 1: Model comparison via the elpd leave-future-out cross-validation measure. A greater value suggests a 228 
better model fit. “Spatial importation excluded” indicates that 𝜁𝑖 is fixed to 0, and “covariates excluded” indicates 229 
that 𝛽 is fixed to 0. When included these are both fit model parameters. 230 

The greatest elpd value, and hence the best performing model, is the main analysis (MA), 231 

containing both a nearest-neighbour spatial importation mechanism, and population / variant 232 

/ funding covariates. This is to be expected as the sensitivities are nested models of the 233 

main analysis, and the elpd does not directly penalise increased model complexity. 234 

However, the improvement offered by including the model covariates (MA vs. SA1, and, SA2 235 

vs. SA3) is insignificant once the standard errors in the elpd estimates are considered, and 236 

therefore not worth the complexity trade-off of their inclusion. The improvement offered by 237 

the inclusion of spatial importation mechanisms however (an estimated elpd increase of 238 

2,939, MA vs. SA2) are significant, and support the inclusion of spatial importation as 239 

important to explaining variation in disease incidence between LTLAs. 240 

Other model formulations are included as supplementary results for comparison in section 4 241 

of the Supplementary Material, including alternate spatial kernels, alternate data sources, 242 

univariate models, and consideration of different reporting assumptions. 243 

Discussion 244 

Our study explored the informative potential of multiple spatially varying health inequity, 245 

socio-demographic, and socio-economic factors on week-to-week transmission potential 246 

within a population. We investigated how these variables related to the observed differences 247 

in COVID-19 week-to-week transmission across 306 administrative regions of England over 248 
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a period of 95 weeks. In conclusion, the majority of these variables were not found to be 249 

significantly associated with COVID-19 transmission; however, we did detect a significant 250 

association for two population variables – the time spent at home, and the number of visits to 251 

workplaces, and one funding variable – the amount of ASC infection control funding 252 

allocated per head to an LTLA. 253 

Starting with ethnicity, Black and South Asian populations have been shown to have 254 

increased COVID-19 mortality risk12. In their global systematic review of the impact of 255 

ethnicity on COVID-19 health outcomes, Irizar et al. (2023)13 report mixed results when 256 

comparing the risk of infection for Asian and “other” ethnicity populations with White majority 257 

populations, in accordance with our results in Figure 3. However, they show a far more 258 

conclusive increased relative risk in Black populations compared to white majority 259 

populations. Our results suggest a mild decrease in week-to-week transmission potential for 260 

LTLAs with a higher proportion of Black African / Caribbean residents on average (though 261 

still statistically insignificant). One possible explanation is that put forward by Harris & 262 

Brunsdon (2021)14, who show that the distribution of COVID-19 cases by ethnicity changes 263 

over time in England, with Black populations reporting far higher relative incidence during the 264 

peak of the first wave, before then changing to capturing the minority of cases proportionally. 265 

Similarly, Mathur et al. (2021)15 report a lower risk of infection in Black populations compared 266 

to White populations during the second wave. They demonstrate this is likely due to the 267 

heterogeneity in spatial incidence over time. Our study both directly factors for spatial 268 

heterogeneity in incidence and considers a longer time period than these studies 269 

investigating this association, potentially explaining our finding. Section 4.3 of the 270 

Supplementary Material shows that the mean coefficient magnitude for the population Black 271 

African / Caribbean proportion is further reduced in the absence of all other covariates, 272 

suggesting that some degree of covariate correlation is also influencing the estimated 273 

importance of the covariate. 274 

Crucially; however, care must be taken when comparing our results to those of community-275 

targeted infection risk studies. Population prevalence studies, such as the REal-time 276 

Assessment of Community Transmission (REACT) studies, and those conducted via the 277 

OpenSAFELY platform, directly investigate how COVID-19 prevalence differed by 278 

demographic indicators like those considered in this study. Ward et al. (2021)16 identified a 279 

three-fold increase in testing antibody-positive within Black populations compared to White 280 

populations (reducing to two-fold when adjusted for confounding factors such as age, sex, 281 

IMD quintile, household size). Mathur et al. (2021)15 identified a similar risk for the period 282 

February 1st – August 3rd 2020, though this increased risk is not identified for the “second 283 

wave” of September 1st – December 31st 2020. Such results should not be directly compared 284 

to the findings of this study, which investigates a fundamentally different result – we do not 285 

consider denominator populations, or individual-level infection results; rather, we consider 286 

how the composition of a population contributes to week-to-week transmission potential. 287 

Our results also show an inconclusive impact of IMD on transmission, though lean towards 288 

higher reproduction numbers seen in more deprived areas. In their systematic review of 289 

socioeconomic COVID-19 impacts, Benita et al. (2022)17 list only nine UK-specific studies, 290 

and report a global trend of mixed and inconclusive findings as to the impact of poverty 291 

metrics on COVID-19 infection. The trend we have shown in Figure 1B, of differences in 292 

case incidence by deprivation quantiles seeming pronounced in some time periods, before 293 

reversing in others is seen in multiple other countries18,19.  294 

The strong negative effect of the “time spent at home” variable is unsurprising given its 295 

inherent epidemiological importance, and its direct impact on disease cases has been 296 
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demonstrated for multiple countries20. While this variable predominantly changes temporally 297 

in relation to NPI measures, strong variation is also observed across LTLAs at any given 298 

time point (see Figure S15 of Supplementary Material). While it is possible that the impact of 299 

some other covariates is captured within the “time spent at home” variable, i.e. LTLAs with 300 

higher incomes also see more time spent at home on average, additional sensitivity 301 

analyses exploring the removal of this variable in the Supplementary Material (section 4.3) 302 

shows that results are broadly unchanged by their inclusion. 303 

Of the three COVID-19 funding pools provided during the pandemic that we consider, only 304 

the ASC infection control fund proved significant. COMF funds are provided for activities 305 

such as targeted testing of hard-to-reach bodies, additional contact tracing, community 306 

support, communication materials, as well as enforcement and compliance expenditure21. 307 

The ASC infection control fund meanwhile was specifically for use in preventing onward 308 

transmission in care home settings. As with many European countries, care homes in 309 

England were hit particularly hard during the first wave of the epidemic in England22, 310 

motivating this specific fund. Our results show that this specific targeting of the most 311 

vulnerable populations was effective in reducing transmission and is the first study to our 312 

knowledge to investigate the associated impact of these funding provisions. All funding 313 

allocations were informed by the specific health needs and population demographics of 314 

respective LTLAs, meaning that some covariates such as IMD and age distribution will have 315 

some degree of correlation. 316 

To investigate the time-specific impact of these covariates, we conducted a sensitivity 317 

analysis whereby the model was fit to three distinct subsections of the overall time series 318 

(section 4.5 of the Supplementary Material). Our results are unchanged across specific time 319 

periods, save for the significance of the ASC infection control fund disappearing for August 320 

8th 2021 onwards, as would be expected, as this was when NPIs had been lifted. 321 

Section 1.7 of the Supplementary Material presents the degree of autocorrelation present 322 

amongst variables. This unavoidable aspect of the dataset is a limitation of the study; 323 

however, we address this through multiple supplementary sensitivity analyses including 324 

univariate model formulations. All fundamental results presented in this study are maintained 325 

under these sensitivities, save for the impact of IMD, which does achieve statistical 326 

significance upon exclusion of the other fifteen covariates. 327 

We have not included vaccination directly, as the vaccination rollout was itself influenced by 328 

the epidemic trajectory, with greater dose uptake encouraged in response to novel variants23. 329 

As such, since our model does not mechanistically include the effect of vaccination, nor the 330 

impact of waning effectiveness, the random walk term will capture both the uptake and 331 

impact of vaccination, but also unique temporal aspects such as public holidays, sporting 332 

events, seasonal patterns, and others. We see in general a reduction in the reproduction 333 

number over time, in line with the vaccine rollout, but also note increases in December likely 334 

aligned with the Christmas holidays, and other adjustments such as an increase in June/July 335 

2021 around the time of the UEFA European Football Championship24, followed by a drop 336 

after the event. 337 

A caveat of this study is the heterogeneity within each LTLA for some covariates of interest. 338 

LTLAs are areas of geographic administration and service provisioning, and as such differ in 339 

population sizes. While many LTLAs are close to the median LTLA population size of 340 

142,622 people (IQR 104,869 – 237,616, see section 1.8 of the Supplementary Material), 341 

some outliers are considerably different, the largest being Birmingham with a population of 342 

1,140,525. Heterogeneity in covariates, such as IMD, within these larger LTLAs can be 343 

observed at the Lower layer Super Output Areas (LSOAs) scale, of 32,844 regions in 344 



   
 

12 
 

England, however COVID-19 case data at this scale is too sparse to model. Thus, the LTLA-345 

scale considered demonstrates a trade-off between demographic detail, data availability, 346 

and modelling feasibility. 347 

We also note a modelling assumption made whereby reported “first episodes” of disease 348 

incidence in an LTLA contributed to fully immunising protection against onwards infection. 349 

While protection against repeat infection was strong for the majority of the time period we 350 

considered25, this was likely to wane more against the Omicron variant. We explored this 351 

modelling assumption through multiple sensitivity analyses where the model was fit to 352 

different time periods, and where waning of acquired immunity was assumed, which are 353 

presented in sections 4.5 and 4.6 of the Supplementary Material. Our model results were 354 

unchanged in these analyses. 355 

The overarching question motivating this study was whether population health and 356 

demographic variables held informative potential such that their inclusion might improve real-357 

time modelling efforts that currently do not incorporate such data streams. Only a minority of 358 

covariates were found to be impactful, and the improvement to model fit they offer is 359 

insignificant. However, substantive improvements are offered by including mechanisms of 360 

spatial spread. Detailed study of lineage exports by Kraemer et al. (2021)26 have previously 361 

demonstrated how human travel alone was able to explain the spatial heterogeneity 362 

observed during the emergence of the Alpha variant in the UK, further supporting our 363 

findings. 364 

While real time modelling efforts are often limited by computational power and thus are 365 

limited in what level of spatial disaggregation can be allowed for, we have effectively 366 

demonstrated that mechanisms of case exportation are a worthwhile inclusion for improving 367 

model fit, and that the benefits of incorporating broader socio-demographic data are unlikely 368 

to be worth the time needed to gather and incorporate the relevant and up-to-date data. 369 

 370 

Methods 371 

 372 

Study population and data 373 

Confirmed COVID-19 cases data were taken from the UK Health Security Agency (UKHSA) 374 

national line list, collected by the Department of Health and Social Care as part of 375 

surveillance activities and shared with us. Only pillar 2 cases (swab testing of the wider 376 

population, not setting-specific) confirmed via PCR were used to account for changes in the 377 

availability of lateral flow devices (LFDs). Cases were then aggregated by week (beginning 378 

Monday) and LTLA. S-gene target failure (SGTF) data for each case was similarly obtained 379 

from the UKHSA line list to identify the proportion of COVID-19 variants each week. The 380 

cumulative number of first episodes by LTLA is obtained from the national data dashboard. 381 

Population data on ethnicity, age, population density, income, was taken from Office for 382 

National Statistics (ONS) reports. IMD data is taken from the Ministry of Housing, 383 

Communities & Local Government (MHCLG) report on English Indices of Deprivation 2019 384 

(IoD2019). Data on time spent at locations is taken from Google community mobility reports. 385 

Data on COVID-19 funding allocations was taken from the associated Department for 386 

Levelling Up, Housing and Communities reports. 387 

In 2021 England was split into 309 LTLAs. Following the format used for the COVID-19 388 

cases data release, we combine the LTLAs of Cornwall and Isles of Scilly; City of London 389 
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and Hackney. The Isle of Wight LTLA is removed. Thus, this study reports on 306 English 390 

LTLAs total. 391 

Detailed descriptions of all covariates are provided in section 1 of the Supplementary 392 

Material. 393 

 394 

Epidemiological model and fitting 395 

Using Bayesian evidence synthesis inference we fit a probabilistic model to data 𝑌𝑖,𝑡 , the 396 

number of weekly pillar 2 PCR-confirmed COVID-19 cases in LTLA 𝑖 at week 𝑡, via a 397 

negative binomial distribution of the form 398 

𝑌𝑖,𝑡 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇𝑖,𝑡 , 𝜙) 399 

for mean 𝜇𝑖,𝑡 and overdispersion parameter 𝜙. The mean takes the form 400 

𝜇𝑖,𝑡 = (𝜆 𝑆𝑖,𝑡−1  (𝑌𝑖,𝑡−1 + 𝜁𝑖 ∑ 𝑌𝑗,𝑡−1

𝑗 ∈ Ωi

)  exp (𝑥𝑖,𝑡−1 𝛽 + 𝑧𝑡−1 + 𝜃𝑖)) 401 

where 𝑆𝑖,𝑡−1 is an estimate of the proportion of the population of LTLA 𝑖 that has no acquired 402 

immunity in week 𝑡 − 1, calculated as 1 – (total number of recorded “first episodes” in LTLA 𝑖 403 

by week 𝑡 / LTLA 𝑖 population), and 𝜆 is a scaling factor parameter, between 0 and 1, scaling 404 

the acquired-immunity lag term to account for the impact of under-reporting of first episodes, 405 

incomplete protection of acquired immunity, and other nationwide scaling effects. Ω𝑖 is the 406 

set of all LTLAs that share a boundary with LTLA 𝑖, and 𝜁𝑖 is a model parameter between 0 407 

and 1 denoting the proportion of cases in neighbouring LTLAs which will cause secondary 408 

cases in LTLA 𝑖. This represents a “nearest neighbours” spatial kernel formulation. 𝑥𝑖,𝑡−1 is a 409 

vector of the sixteen covariates considered in this study for LTLA 𝑖, at week 𝑡 − 1. 𝛽 is the 410 

vector of coefficients capturing the relative impact of each covariate. 𝑧𝑡−1 represents the (𝑡 −411 

1)th step in a Gaussian random walk process, and 𝜃𝑖 is an LTLA-specific error-term. 412 

Heuristically, the left-hand side of the expression represents the number of cases 413 

contributing to the next week’s number of cases, and the right-hand side may be considered 414 

an estimate of the time-varying reproduction number. 415 

We model 95 weeks in total, from the week beginning May 10th 2020 to the week beginning 416 

February 27th 2022, as case testing rates become inconsistent outside of this window. 417 

Analyses were conducted in R version 4.1.1. The model was run in Stan via the rstan27 418 

package. All associated code is available in our online repository 419 

(https://github.com/thomrawson/Rawson-spatial-covid). See section 5 of the Supplementary 420 

Material for full details of package versions. 421 

Further methodological detail is provided in sections 2 and 3 of the Supplementary Material. 422 

 423 

Sensitivity Analyses 424 

Model comparison is performed via the expected log pointwise predictive density (elpd) 425 

score under a leave-future-out cross-validation process, detailed in section 4.2 of the 426 

Supplementary Material.  427 
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As a supplementary result we also test the impact of using different data streams. While 428 

SGTF is considered a highly accurate indicator for discerning between variants of concern 429 

(VOC)28, for completeness the Supplementary Material also presents analyses where variant 430 

proportion is instead confirmed by whole genome sequencing (WGS). We also conduct a 431 

sensitivity analysis where case data is expanded to include both pillar 1 and pillar 2 cases 432 

and includes LFD cases. In both sensitivities, the results remain unchanged from the 433 

inclusion of these data. 434 

Sensitivity analyses exploring acquired-immunity assumptions are presented in section 4.6 435 

of the Supplementary Material. 436 

Sensitivity analyses exploring differences in reporting by ethnicity and IMD are presented in 437 

section 4.7 of the Supplementary Material. 438 

Other model formulations are included for comparison in section 4 of the Supplementary 439 

Material, including alternate spatial kernels and univariate models. 440 

 441 
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