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22 ABSTRACT

23 Background and Purpose: Glioblastoma is a highly aggressive brain tumor with limited 

24 survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status 

25 (KPS) score is a valuable tool for assessing patient functionality and contributes to the stratification of 

26 patients with poor prognoses. This study aimed to develop a 6-month postoperative KPS prediction 

27 model by combining clinical data with deep learning-based image features from pre- and postoperative 

28 MRI scans, offering enhanced personalized care for glioblastoma patients.

29 Materials and Methods: Using 1,476 MRI datasets from the Brain Tumor Segmentation 

30 Challenge 2020 public database, we pretrained two variational autoencoders (VAEs). Imaging features 

31 from the latent spaces of the VAEs were used for KPS prediction. Neural network-based KPS 

32 prediction models were developed to predict scores below 70 at 6 months postoperatively. In this 

33 retrospective single-center analysis, we incorporated clinical parameters and pre- and postoperative 

34 MRI images from 150 newly diagnosed IDH wild-type glioblastoma, divided into training (100 

35 patients) and test (50 patients) sets. In training set, the performance of these models was evaluated 

36 using the area under the curve (AUC), calculated through fivefold cross-validation repeated 10 times. 

37 The final evaluation of the developed models assessed in the test set.

38 Results: Among the 150 patients, 61 had 6-month postoperative KPS scores below 70 and 89 

39 scored 70 or higher. We developed three models: a clinical-based model, an MRI-based model, and a 

40 multimodal model that incorporated both clinical parameters and MRI features. In the training set, the 

41 mean AUC was 0.785±0.051 for the multimodal model, which was significantly higher than the 

42 clinical-based model (0.716±0.059, P=0.038) using only clinical parameters and MRI-based model 

43 (0.651±0.028, P<0.001) using only MRI features. In the test set, the multimodal model achieved an 

44 AUC of 0.810, outperforming the clinical-based (0.670) and MRI-based (0.650) models.

45 Conclusion: The integration of MRI features extracted from VAEs with clinical parameters in the 



46 multimodal model substantially enhanced KPS prediction performance. This approach has the 

47 potential to improve prognostic prediction, paving the way for more personalized and effective 

48 treatments for patients with glioblastoma.

49 Abbreviations:

50 KPS, Karnofsky performance status. IDH, isocitrate dehydrogenase. VAE, variational autoencoder. 

51 BraTS, Brain Tumor Segmentation challenge
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55 INTRODUCTION

56 Glioblastoma is a highly malignant brain tumor with a median overall survival of 

57 approximately 15–18 months.[1] Despite numerous studies on treatment strategies, it often recurs 

58 rapidly, leading to a worsened functional prognosis.  

59 Deep learning has increasingly been applied to detect, diagnose, and predict clinical outcomes 

60 in patients with glioblastoma.[2] However, it is still uncertain whether a radiomics approach using 

61 deep learning approach can enhance the prediction of clinical outcome or if pre- and postoperative 

62 MRI features can reliably predict prognosis.

63 The Karnofsky Performance Status (KPS) score stands as a robust independent predictor of 

64 clinical outcomes within diverse oncology populations affected by malignant tumors.[3] A KPS score 

65 of 70 indicates the patient can care for themselves but is unable to carry out daily activities. Among 

66 patients with glioblastoma, multiple studies have indicated a correlation between a KPS score of <70 

67 and a poor prognosis.[4] The 6-month postoperative KPS was chosen for its clinical practicality, as it 

68 aligns with the standard timeframe for evaluating disease progression after a typical course of adjuvant 

69 treatments. Predicting the postoperative KPS, along with the early identification of patients at risk of 

70 diminished KPS in the postoperative stage, could lead to improved counseling and more personalized 

71 clinical decision-making.[5]

72  In this study, we developed a multimodal model using clinical parameters and brain MRI to 

73 stratify patients into prognostic groups based on their 6-month postoperative KPS. We utilized a deep 

74 learning approach to extract imaging features from pre- and postoperative MRI images and 

75 investigated their prognostic value. 

76

77 MATERIALS AND METHODS

78 The overall study process is illustrated in Fig 1. The proposed algorithm comprises two 



79 primary stages: 1) constructing variational autoencoders (VAEs) to extract the reduced latent features 

80 from the pre- and postoperative MRI images, and 2) developing a KPS prediction model by combining 

81 the patients’ clinical parameters and extracted imaging features. The authors collected patients' data 

82 from April 2022 to July 2023.

83 Fig 1. Outline of the main steps in this study.

84 (1) Patient surveys and data acquisition from our institute’s medical records, (2) brain tumor 

85 segmentation using pre- and postoperative MRI, (3) imaging feature extraction using a pretrained 

86 variation autoencoder combined with a convolutional neural network, and (4) prediction model 

87 development using a neural network and training. The performance metrics in the training set were 

88 evaluated using 10 repetition of fivefold cross-validation. GBM=glioblastoma; HGG=high-grade 

89 glioma; VAE=variational autoencoder.

90

91 Ethics Approval

92 The Ethics Committee of Kyoto University Hospital approved this study (R2088). Verbal 

93 informed consent was obtained from the study participants. Participants were informed before their 

94 surgery that their images and clinical information would be used in a retrospective review after being 

95 fully anonymized. The ethics committee waived the requirement for written informed consent owing 

96 to the retrospective study design. Patients who did not wish to participate were excluded via an opt-out 

97 process.

98

99 Patients

100 This single-center retrospective review was conducted between December 2001 and December 

101 2022 at our institution. This study included consecutive adult patients aged 18 years and older who 

102 were newly histopathologically diagnosed with glioblastoma with isocitrate dehydrogenase (IDH) wild 

103 type. The exclusion criteria for the study cohort were as follows: 1) gliomas that were not 



104 histopathologically diagnosed as glioblastomas, 2) lack of immunohistochemical testing for the IDH1 

105 R132H mutation or absence of IDH2 sequencing, 3) a diagnosis of IDH-mutant gliomas, and 4) a 

106 follow-up period of <6 months. A total of 257 patients were pathologically confirmed to have 

107 glioblastoma. Among these, 87 patients were excluded based on the following criteria: diagnosis of 

108 IDH-mutant gliomas (n=11) or absence of either immunohistochemistry for the IDH1 R132H 

109 mutation or IDH2 sequencing (n=76). Additionally, patients lacking sufficient medical records or 

110 imaging data (n=18) and those aged <18 years (n=2) were also excluded. Subsequently, patients were 

111 divided into training and test sets based on their first operation date. Patients who underwent surgery 

112 from December 2001 to October 2018 were assigned to the training set, while those from November 

113 2018 to December 2022 were included in the test set. This process resulted in 100 patients in the 

114 training set and 50 in the test set (S1 Fig).

115 Clinical Parameters and Endpoints

116 The clinical parameters included following 28 variables.

117 Preoperative variables: sex, age at diagnosis, dominant hand (right/left), epilepsy (yes/no), 

118 aphasia (yes/no), paralysis (yes/no), other neurological findings at onset (yes/no), and preoperative 

119 KPS score (%).

120 Intraoperative variables: surgical strategy (biopsy or tumor removal), awake surgery (yes/no), 

121 utilization of 5-aminolevulinic acid (yes/no), photodynamic therapy (yes/no), carmustine wafer 

122 placement (yes/no), and motor-evoked or somatosensory-evoked potential monitoring (yes/no).

123 Immunohistochemical and genetic variables: O-6-methylguanine-DNA methyltransferase 

124 (MGMT) methylation (positive/negative), TERTp alteration (positive/negative), MIB-1 labeling index 

125 (%), and immunohistochemical staining for MGMT (positive/negative).

126 Postoperative variables: TMZ chemotherapy (yes/no), bevacizumab chemotherapy (yes/no), 

127 radiation dose (Gy), number of radiation fractionations (Fr).

128 Radiological findings: tumor laterality (right/left/bilateral), ependymal involvement (yes/no), 



129 midline shift (yes/no), corpus callosum invasion (yes/no), necrotic or cystic area evident on imaging 

130 (yes/no), and extent of resection (1–49%, 50–89%, 90–99%, 100%).

131 Additionally, the 6-month postoperative KPS (%) score, the main endpoint of this study, was 

132 collected. 

133 For the standard concurrent chemoradiotherapy regimen, patients received fractionated focal 

134 radiation therapy with a cumulative dose of 60 Gy, accompanied by concomitant TMZ 

135 chemotherapy.[6] For elderly patients aged 70 years or older, a hypofractionated radiotherapy schedule 

136 of 40 Gy delivered in 15 fractions over 3 weeks was employed.[7] All patients were followed up every 

137 1–2 months after surgical treatment. 

138

139 Imaging Acquisition and Preprocessing

140 The following 3-mm slices of MRI scans were collected from each patient: T1WI, contrast-

141 enhanced T1W (T1Gd), ADC, DWI, and FLAIR. In the study population, preoperative MRI images 

142 were acquired within 2 weeks before surgery, and postoperative MRI images were acquired the day 

143 after surgery, whenever the patient’s condition allowed. Brain MRI images were processed using a 

144 deep brain extractor to remove the skin and cranial bones.[8] The brain parenchyma was extracted 

145 based on the T1WI and DWI images (represented in gray in Fig 2). 

146

147 Tumor Segmentation

148 To achieve semantic segmentation of the glioblastoma lesion on MRI scans, we utilized a 

149 segmentation model based on the U-net architecture, specifically designed for the segmentation of 

150 glioma.[9] Using this segmentation model, we highlighted the segmented regions, including enhanced 

151 tumors, necrosis, and cystic lesions, which are shown in red. Peritumoral edema and non-enhancing 

152 tumor areas are shown in green (Fig 2). Images with a thickness of 3 mm were used for each MRI 

153 sequence. After semantic segmentation, the tumor area, represented in red, was automatically 



154 measured. We then selected 24 segmented images per patient to ensure that the slice with the largest 

155 tumor area was included in the central part of the selected slices. 

156 Fig 2. Tumor segmentation using preoperative and postoperative MRI.

157 Using a pretrained U-net-based segmentation module, pre- and postoperative segmented images were 

158 generated from 24 slices of FLAIR, T1W, T1Gd, ADC, and DWI images. The brain parenchyma is 

159 displayed in gray, enhanced tumor lesions and necrosis in red, and peritumoral edema and non-

160 enhancing lesions in green. T1Gd=contrast-enhanced T1W. 

161

162 MRI Feature Extraction from the Latent Space of a Variational 

163 Autoencoder

164 MRI features were extracted from the segmented brain images using two independently 

165 developed VAEs, as shown in Fig 3. VAE 1 was utilized to process segmented tumor lesions from 

166 pre- and postoperative MRI images as input data. In contrast, VAE 2 processed data from pre- and 

167 postoperative brain parenchyma areas, serving as both input and output. The comprehensive 

168 architecture of these VAEs is demonstrated in S2 Fig. From these VAEs, MRI features were extracted 

169 from the 48-dimensional latent spaces of both VAE 1 and 2.

170 Fig 3. Extraction of deep imaging features from the latent space of a variational autoencoder.

171 Twenty-four slices of the segmented images were separated into tumor lesions (red or green) and brain 

172 mask images (gray). The tumor lesion images were processed by VAE 1, where internal 3D 

173 convolutional neural networks extracted features and reduced dimensionality using encoder 1. As a 

174 result, a 48-dimensional latent space was formed, and the generated deep imaging features were 

175 incorporated into the KPS prediction model. Similarly, the brain mask images were processed by 

176 being input into VAE 2. Both VAEs 1 and 2 were pretrained using the BraTS 2020 dataset. 

177 VAE=variational autoencoder; KPS=Karnofsky performance status; BraTS=brain tumor segmentation 

178 challenge.



179

180   We pretrained these VAEs using 1,476 MRI datasets of high-grade glioma and glioblastoma 

181 MRI images from the BraTS 2020 dataset.[10] BraTS 2020 provided thin-slice MRI images of 369 

182 patients with high-grade gliomas. The slices were extracted at regular intervals to create four different 

183 MRI datasets from a single patient. Pretraining of the VAE was conducted using annotated brain mask 

184 images and segmented tumor regions as ground truth data (Fig 1).

185

186 Development of a KPS Prediction Model Using Neural Networks

187 To stratify patients with a postoperative KPS score of <70 at 6 months, we developed neural 

188 network prediction models using training set (Fig 1). 

189 These prediction models use two distinct inputs: clinical and MRI features. First, we developed 

190 a clinical neural network model using clinical parameters. In this clinical-based model, the input 

191 consists of clinical features, while the final output layer comprises two neurons, making it suitable for 

192 binary classification: predicting whether the 6-month postoperative KPS score <70 or ≥70.

193 In addition to the clinical-based model, an MRI-based model was constructed using MRI 

194 features. Furthermore, clinical and accompanying MRI features were employed as inputs for the 

195 multimodal model. The details of the development of the prediction model are shown in S3 Fig.

196 During the model development with the training set, we assessed predictive performance using 

197 the area under the receiver operating characteristic curve (AUC) through 10 repetitions of fivefold 

198 cross-validation (Fig 1). This approach served as an appropriate internal validation procedure, 

199 especially given the absence of external testing.[11,12] The effectiveness of the model was visualized 

200 through the mean ROC curves across all fivefold cross-validation. Furthermore, to evaluate the 

201 performance in fivefold cross-validation, the following metrics were computed: accuracy, sensitivity, 

202 specificity, and F1 score. The performance of the three developed models—clinical-based, MRI-

203 based, and multimodal—was evaluated using test sets that were held out during the model 



204 development and training process. We also developed the following machine learning models: a 

205 Random Forest classifier, XGBoost, and LightGBM. These machine learning models perform 

206 hyperparameter tuning using the GridSearch software. We extensively compared and analyzed the 

207 predictive capabilities of each classifier by considering the aforementioned metrics (S4 Fig). 

208

209 Model Interpretability

210 Grouped permutation feature importance was utilized to determine the feature importance in 

211 the neural network-based prediction model.[13] In this analysis, features were optionally grouped into 

212 expert-defined subgroups, and a systematic assessment of their importance was conducted. In this 

213 study, during the feature extraction process, 196 MRI features were generated from preoperative and 

214 postoperative MRI imaging. To enhance interpretability, the variables derived from the preoperative 

215 brain mask image were grouped as "pre_mask variables". Similarly, variables from postoperative brain 

216 mask, preoperative tumor lesion, and postoperative tumor lesion images were grouped as 

217 "post_mask," "pre_lesion," and "post_lesion variables," respectively. Twenty-eight clinical parameters 

218 were evaluated separately, without grouping.

219

220 Statistical Analysis

221 All statistical analyses were performed using the SciPy library. Univariate analysis was used to 

222 examine the relationship between the 6-month postoperative KPS deterioration and clinical 

223 parameters. Fisher’s exact test was used to evaluate categorical variables, whereas the Mann–Whitney 

224 U test was used for continuous variables. The cross-validated metrics of each prediction model were 

225 compared using the paired-samples t test. Statistical significance was set at P <0.05. 

226

227

228 RESULTS



229 Patient Demographics

230 Of the 150 study population, 61 patients had a 6-month postoperative KPS score of <70 and 89 

231 had ≥70. Baseline clinical parameters are presented in Table 1. Among these 150 patients, 65 (43.3%) 

232 were female, with a mean age of 64 years (range, 21–92 years). The median preoperative and 6-month 

233 postoperative KPS scores were 80 (range, 20–100) and 70 (range, 0–100), respectively. Out of the 118 

234 patients with a preoperative KPS score of ≥70, 43 had a 6-month postoperative KPS score of <70. 

235 Conversely, among the 38 patients with a preoperative KPS score of <70, 14 had a 6-month 

236 postoperative KPS score of ≥70. These patients were divided into training and test sets. Patients who 

237 underwent surgery from December 2001 to October 2018 were assigned to the training set (n=100), 

238 while those from November 2018 to December 2022 were included in the test set (n=50). 

239 Table 1. Baseline clinical characteristics.

Overall 

(N=150)

KPS < 70

(n=61)

KPS ≥ 70

(n=89)
P value

 Sex (female), n (%) 65 (43.3) 24 (39.3) 41 (46.1) 0.50

 Median age, year (range) 64 (21 – 92) 72 (32 – 92) 60 (21 – 83) < 0.001

 Dominant hand (right-handed), n (%) 147 (98) 58 (95.1) 89 (100) 0.07

 Preoperative epilepsy, n (%) 40 (26.7) 12 (19.7) 28 (31.5) 0.13

 Preoperative aphasia, n (%) 42 (28) 24 (39.3) 18 (20.2) 0.02

 Preoperative paralysis, n (%) 67 (44.7) 35 (57.4) 32 (36.0) 0.01

 Other preoperative neurological 
findings, n (%)

102 (68) 45 (73.8) 57 (64.0) 0.22

 Operation strategy (biopsy), n(%) 27 (18) 20 (32.8) 7(7.9) < 0.001

 Awake surgery, n (%) 54 (36) 19 (31.1) 35 (39.3) 0.39

 5-aminelevulinic acid (5-ALA), n (%) 78 (52) 25 (41.0) 53 (59.6) 0.03

 Photodynamic therapy, n (%) 7 (4.7) 1 (1.6) 6 (6.7) 0.24

 Carmustine wafers placement, n(%) 36 (24) 9 (14.8) 27 (30.3) 0.03



 MEP or SEP monitoring, n (%) 76 (50.1) 26 (42.6) 50 (56.2) 0.14

 Temozolomide chemotherapy, n (%) 142 (94.7) 56 (91.8) 86 (89.9) 0.27

 Bevacizumab chemotherapy, n (%) 65 (43.3) 32 (52.5) 33 (37.1) 0.068

 MGMT promoter methylation, n (%) 51 (34) 19 (31.1) 32 (36.0) 0.60

 TERT promoter mutation, n (%) 49 (32.7) 19 (31.1) 30 (33.7) 0.86

 Median MIB-1 index,  % (range) 22.5 (0 – 90) 21.2 (10 – 80) 24.8 (0 – 90) 0.45

 IHC staining of MGMT, n (%) 54 (36) 20 (32.8) 34 (38.2) 0.60

 Radiation dose, Gy (range) 60 (0 – 63.2) 40.05 (0 – 60) 60 (0 – 63.2) < 0.001

 Number of radiation fraction (Fr) 30 (0 – 30) 15 (0 – 30) 30 (0 – 30) < 0.001

 Tumor laterality, n (%)

  Right 75 (50) 27 (44.3) 48 (53.9) 0.47

  Left 63 (42) 28 (45.9) 35 (39.3) -

  Bilateral 12 (8.0) 6 (9.8) 6 (6.7) -

 Ependymal invasion, n (%) 107 (71.3) 51 (83.6) 56 (62.9) 0.006

 Midline shift, n (%) 63 (42) 29 (47.5) 34 (38.2) 0.31

 Corpus callosum invasion, n (%) 41 (27.3) 24 (39.3) 17 (19.1) 0.009

 Necrosis/cysts evident on imaging, n 
(%)

138 (0.92) 58 (95.1) 80 (89.9) 0.36

 Extent of resection, n (%)

  1–49% 30 (20) 22 (36.7) 8 (9.0) < 0.001

  50–89% 21 (14) 12 (19.7) 9 (10.1) -

  90–99% 43 (28.7) 10 (16.4) 33 (37.1) -

  100% 56 (37.3) 17 (27.9) 39 (43.8) -

 Karnofsky performance status

 Median preoperative KPS, (range) 80 (20 – 100) 70 (20 – 100) 80 (40 – 100) < 0.001

 Preoperative KPS ≥ 70, n (%) 118 (78.7) 43 (70.5) 75 (84.3) 0.002

 Median 6-months postoperative KPS,  
 (range)

70 (0 – 100) 50 (0 – 60) 80 (70 – 100) < 0.001

240 Categorical variables are presented as the count of patients (percentage), while continuous variables 

241 are shown as the median value (range).



242 MEP, motor evoked potentials. SEP, Somatosensory evoked potentials. MGMT, O-6-Methylguanine-

243 DNA Methyltransferase. TERT, Telomerase Reverse Transcriptase. IHC, Immunohistochemical. KPS, 

244 Karnofsky performance status.

245

246

247 Model Development

248 Using the training set, we developed three models to predict 6-month postoperative KPS scores 

249 of <70: a clinical-based model, an MRI-based model, and a multimodal model that incorporated both 

250 MRI features and clinical data. When both clinical and MRI data were utilized, the area under the 

251 curve (AUC) was higher than when using either clinical or MRI data alone (Fig 4A–C, E). The mean 

252 AUC was 0.785 (SD 0.051) for the multimodal model using both clinical and MRI features, 0.716 (SD 

253 0.059, P<0.001) when only clinical parameters were considered, and 0.651 (SD 0.028, P<0.001) when 

254 only MRI features were used.

255 Fig 4. Development of models to predict 6-month postoperative KPS score of <70 using the 

256 training set.

257 During model development, performance was evaluated using the training set with 10 repetitions of 

258 fivefold cross-validation. The ROC curves for each repeat of the fivefold cross-validation are 

259 represented in gray, whereas the mean ROC curve for the 10 repeats is shown in blue. The area under 

260 the curve of the model was 0.715 when using clinical parameters (A), 0.651 when using deep imaging 

261 features from pre- and postoperative MRI (B), and 0.785 when combining clinical parameters with 

262 deep imaging features (C). (D) The top five feature contributions in the multimodal model are 

263 evaluated by grouped permutation importance. (E) The predicted performance of each model. Data are 

264 shown as the mean score ± standard deviation.

265 KPS=Karnofsky performance status.

266



267 Multimodal models also outperform clinical-based and MRI-based models in terms of 

268 accuracy (clinical parameters plus MRI features: 0.728 [SD 0.032]; clinical parameters: 0.674 [SD 

269 0.045, P<0.021]; MRI features: 0.631 [SD 0.021, P<0.001]), sensitivity (clinical parameters plus MRI 

270 features: 0.529 [SD 0.091]; clinical parameters: 0.406 [SD 0.117, P=0.039]; MRI features: 0.402 [SD 

271 0.076, P=0.01]), and F1 score (clinical parameters plus MRI features: 0.572 [SD 0.066]; clinical 

272 parameters: 0.434 [SD 0.086, P=0.002]; MRI features: 0.439 [SD 0.078, P=0.005]). The specificity of 

273 the multimodal model was 0.847 [SD=0.057], which was not significantly different from the clinical-

274 based model (0.834, [SD=0.115, P=0.77]) and the MRI-based model (0.789, [SD=0.042, P=0.06]).

275 The neural network-based prediction model outperformed other machine learning classifiers, 

276 including the Random Forest classifier, XGBoost, and LightGBM, when utilizing clinical parameters 

277 and MRI features. The mean AUC scores, determined through 10 repeated fivefold cross-validations 

278 with optimized hyperparameters, were calculated for each classifier. The mean AUC scores and 

279 associated P values compared with the neural network model were as follows: Random Forest 

280 classifier, 0.663 (SD 0.020, P<0.001); XGBoost, 0.705 (SD 0.029, P<0.005); and LightGBM, 0.720 

281 (SD 0.23, P=0.01) (S4 Fig). Moreover, the test set evaluation of our neural network models—clinical-

282 based, MRI-based, and multimodal—demonstrated the superiority of the multimodal model with the 

283 mean AUC of 0.810. Its performance metrics included accuracy of 0.727, specificity of 0.643, 

284 sensitivity of 0.789, and an F1 score of 0.76, mirroring the training set outcomes (Fig 5).

285 Fig 5. Prediction performance in the test set

286 The clinical-based, MRI-based, and multimodal models were pretrained using the training set, then 

287 their prediction performance was evaluated using the test set.

288

289 Model Interpretability Analysis

290 To improve the understanding, trust, and verification of the model predictions, grouped 

291 permutation importance was applied.[13] Grouped permutation importance quantifies the feature 

292 contribution, thus providing an interpretable relationship between the incorporated features and the 



293 model prediction. Fig 4D illustrates the importance of the top five relative features for the multimodal 

294 model to predict a 6-month KPS score of <70. The most important feature in the model was “age,” 

295 followed by “radiation dose (Gy)” and “preoperative KPS.” Furthermore, “postoperative mask image” 

296 ranked fourth, while “preoperative mask image” ranked fifth, and these MRI features also contributed 

297 to the model prediction. 

298

299 DISCUSSION

300 Improved Performance When Incorporating Multimodal Data

301 The current study demonstrated that combining imaging features with clinical parameters is 

302 effective in improving the performance of clinical-based models, leading to the construction of 

303 clinically implementable models. There has been a notable increase in machine learning-based models 

304 to solve medical challenges in glioblastoma[14]; however, these models typically use data from only 

305 one modality (e.g., clinical parameters). Recently, several researchers have successfully improved the 

306 performance of models designed for clinical implementation by combining multiple modalities rather 

307 than relying on a single modality.[15] To construct a multimodal model incorporating medical 

308 imaging data into clinical-based models, it is necessary to extract imaging features from the 

309 radiographic images. The imaging features used in this process can be broadly categorized into two 

310 types: handcrafted and deep imaging features.[16] In general, handcrafted features are defined by the 

311 use of explicit formulas and are often derived from morphological, statistical, and textural properties. 

312 On the other hand, deep imaging features are generated through a deep learning using transfer 

313 learning.[17]

314 Lao et al. examined the importance of deep imaging and handcrafted features in the 

315 development of an overall survival prediction model for 112 patients with glioblastoma.[16] They 

316 compared 1,403 handcrafted features with 98,304 deep imaging features, which were extracted using a 

317 convolutional neural network from the preoperative MRIs. They concluded that deep imaging features 



318 contributed more to the model's performance. Recently, reviewing 69 studies of radiomic models, 

319 Demircioglu reported that clinical-based models constructed based on deep imaging features often 

320 outperform those relying on handcrafted features. Additionally, the author suggested that combining 

321 the two into a fused model could potentially enhance model performance.[17] When processing three-

322 dimensional MRI data using a pretrained convolutional neural network, a very large number of 

323 features were generated compared to the number of patients. Therefore, strong feature selection and 

324 shrinkage are required to develop reliable clinical-based models and increase interpretation.[18]

325 In the present study, we utilized a VAE as a feature extractor and demonstrated significant 

326 improvements in the performance of the KPS prediction model for patients with glioblastoma. Deep 

327 imaging features (i.e., MRI features) were extracted from the latent space and subsequently combined 

328 with clinical parameters. When jointly trained on data from MRI and clinical parameters in the 

329 training set, the mean AUC for predicting a 6-month postoperative KPS score of <70 was consistently 

330 higher (0.785, SD 0.051) than the models trained solely on clinical parameters (0.716, SD 0.059, 

331 P=0.038) or MRI features (0.651, SD 0.028, P<0.001) (Fig 4E). Furthermore, in the test set, the 

332 multimodal model's AUC was 0.810, surpassing the clinical-based model's AUC of 0.670 and the 

333 MRI-based model's AUC of 0.650 (Fig 5). The important features contributing to the development of 

334 the combined model were evaluated using group permutation importance.[13] Among the top five 

335 important features, three clinical parameters, namely "age,” "radiation dose," and "preoperative KPS," 

336 were included, along with the deep imaging features extracted from MRI, "postoperative mask image," 

337 and "preoperative mask image." Analysis of grouped permutation importance supported the idea that 

338 MRI features contributed to model development and improved model performance. We consistently 

339 observed an improvement in prediction performance when incorporating clinical parameters and MRI 

340 features. This aligns with findings from other studies that have utilized deep learning models to merge 

341 diverse data modalities, including scenarios where clinical parameters were integrated with chest X-

342 rays or cancer biomarkers were fused with MRI data.[19,20] The integration of medical imaging data 

343 with corresponding medical parameters is proving to be a valuable approach for enhancing model 

344 performance.



345

346 Clinical Implication 

347 Prediction of health status and functional impairment is critical for clinical and personal 

348 decision-making in patients with glioblastoma. A KPS score of ≥70 indicated that the patients were 

349 capable of independent self-care. Identifying patients who will require nursing or caregiving 6 months 

350 postoperatively or patients who are currently in need of care but are expected to recover independent 

351 living within 6 months is crucial for providing personalized medical management. 

352 A low KPS was significantly correlated with a poor prognosis. For patients presenting with a 

353 KPS score of <70, less invasive treatments may be considered as an alternative to the standard 

354 protocol, which generally includes tumor removal followed by chemoradiotherapy.[21] A recent 

355 retrospective analysis revealed that the mean overall survival for patients with a postoperative KPS 

356 score of <70 was 8 months.[4] Moreover, in clinical practice, when managing recurrent glioblastoma, 

357 their performance status can significantly influence therapeutic decision-making, which may involve 

358 options like surgical re-intervention, re-irradiation, or best supportive care.[22] Due to the limited 

359 availability of publicly accessible, precise clinical databases, research predicting the course of 

360 performance status in patients with malignant tumors is much scarcer compared to the development of 

361 prediction models for overall survival or progression-free survival. However, in recent years, several 

362 studies have reported that machine learning approaches have successfully predicted changes in KPS 6 

363 months postoperatively in patients with glioblastoma, as well as poor performance status in patients 

364 with cancer 6 months after diagnosis.[23,24] The development of a KPS prediction model could help 

365 stratify patients based on their anticipated clinical course, resulting in significant implications for 

366 optimizing the balance between preserving quality of life and pursuing a more aggressive treatment 

367 approach.

368 The prediction of prognosis using pre- and postoperative MRI may also contribute to surgical 

369 planning. The planning and outcome of brain tumors are influenced by the surgeon’s experience and 

370 involve weighing the benefits of resection against the risk of neurological impairment.[25] It has 



371 recently been reported that preoperative T1Gd MRI images can accurately predict surgical 

372 resectability using a neural network.[26] Furthermore, a recent study has demonstrated that generative 

373 artificial intelligence models are capable of producing fine-quality images of brain tumors and normal 

374 parenchyma.[27] We assumed that the present KPS prediction model could enhance surgical 

375 simulation when integrated with a reliable surgical resectability prediction model and by using 

376 generative artificial intelligence to produce postoperative MRI images from preoperative scans.

377 Limitations

378 This study was limited by its relatively small patient cohort. Therefore, well-powered studies 

379 are required. As a retrospective study conducted at a single center, its external validity may have been 

380 limited by patient selection bias in our department. In accordance with the previously reported critical 

381 appraisal guidelines for AI research, our study aligns with Level 5B: one retrospective study with only 

382 internal data used for final performance reporting.[28] Our understanding of surgical techniques and 

383 adjuvant therapy has gradually evolved. Patients treated in the latter years of this study likely benefited 

384 from our greater knowledge and improved treatments that are not included as clinical parameters in 

385 this study.

386

387 CONCLUSIONS

388 Imaging features extracted from MRI scans using VAEs may provide valuable representations 

389 reflecting the prognosis of patients with wild-type IDH glioblastoma. The integration of these imaging 

390 features, achieved through the development of a multimodal model, significantly enhanced the 

391 performance of the neural network-based prediction model. Predicting the 6-month postoperative KPS 

392 score has the potential to impact personalized treatment decisions, including the selection of treatment 

393 intensity and consideration of early palliative care. The future clinical implementation of the KPS 

394 prediction model offers the possibility of tailored medical interventions. 

395
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