1	
2	
3	
4	Antiretroviral therapy retention, adherence, and clinical outcomes
5	among postpartum women with HIV in Nigeria
6	
7	
8 9 10	Clara M. Young ^{1,#a} , Charlotte A. Chang ² , Atiene S. Sagay ³ , Godwin Imade ³ , Olabanjo O. Ogunsola ⁴ , Prosper Okonkwo ⁴ , Phyllis J. Kanki ^{2*}
11 12 13	¹ College of Public Health, The University of Iowa, Iowa City, Iowa, United States of America
14 15	² Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
16 17 18	³ Jos University Teaching Hospital, University of Jos, Jos, Nigeria
19	⁴ APIN Public Health Initiatives, Abuja, Nigeria
20 21 22	^{#a} Current Address: University of California San Diego, San Diego, California, United States of America
23	Short title: Clinical outcomes among postpartum women with HIV
24	* Corresponding author: Phyllis J. Kanki
25	E-mail: pkanki@hsph.harvard.edu (PK)

1 Abstract

2 While research involving pregnant women with HIV has largely focused on the antepartum 3 and intrapartum periods, few studies in Nigeria have examined the clinical outcomes of these 4 women postpartum. This study aimed to evaluate antiretroviral therapy retention, adherence, and 5 viral suppression among postpartum women in Nigeria. This retrospective clinical data analysis 6 included women with a delivery record at the antenatal HIV clinic at Jos University Teaching 7 Hospital between 2013 and 2017. Descriptive statistics quantified proportions retained, adherent 8 (≥95% medication possession ratio), and virally suppressed up to 24 months postpartum. Among 9 1535 included women, 1497 met the triple antiretroviral therapy eligibility criteria. At 24 months, 10 1342 (89.6%) women remained in care, 51 (3.4%) reported transferring, and 104 (7.0%) were lost 11 to follow-up. The proportion of patients with >95% medication possession ratio decreased from 12 79.0% to 69.1% over the 24 months. Viral suppression among those with results was 88.7% at 24 13 months, but <62% of those retained had viral load results at each time point. In multiple logistic 14 regression, predictors of loss to follow-up included having a more recent HIV diagnosis, higher 15 gravidity, fewer antenatal care visits, and a non-hospital delivery. Predictors of viral non-16 suppression included poorer adherence, unsuppressed/missing baseline viral load, lower baseline 17 CD4+ T-cell count, and higher gravidity. Loss to follow-up rates were lower and antiretroviral therapy adherence rates similar among postpartum women at our study hospital compared with 18 19 other sub-Saharan countries. Longer follow-up time and inclusion of multiple facilities for a 20 nationally representative sample would be beneficial in future studies.

21 Introduction

Since the human immunodeficiency virus (HIV) epidemic's peak in 1995, new infections have decreased by 59% to 1.3 million in 2022 [1]. This wane can be widely attributed to the accessibility and evolution of antiretroviral therapy (ART), which has positively shifted patient prognosis and decreased transmission risk. Nonetheless, HIV persists as a leading cause of death in low-income countries–remaining a global health priority [2].

27

28 Disproportionately affected by the disease, sub-Saharan Africa constituted 60% of global 29 HIV infections in 2020 [3]. Within the central-west subregion, Nigeria bears the greatest disease 30 burden, ranking fourth in the world [4]. The prioritization of HIV programming in the country has 31 resulted in attenuated incidence and HIV-related morbidity and mortality; however challenges 32 persist [5]. New infections continue to be fueled through mother-to-child transmission (MTCT) 33 during gestation, delivery, and breastfeeding, with 21,000 newly infected children in Nigeria in 34 2020 [3]. ART coverage among pregnant and breastfeeding women with HIV in Nigeria was 35 estimated at 44%, with a 25% vertical transmission rate in 2020 [3].

36

37 While MTCT research has historically centered on ART uptake and viral suppression 38 among pregnant women with HIV through delivery and diagnostic outcomes among their neonates 39 after delivery, less coverage has been given to ART continuation and clinical outcomes among 40 these women postpartum [6]. Postnatal continuation of maternal ART can reduce MTCT rates to 41 less than 2% in resource-limited countries [7–9]. However, ART adherence declines dramatically 42 in mothers with HIV up to 18 months postpartum [10], and new mothers have increased risks of becoming lost to follow-up (LTFU) in HIV care and having viremia, increasing risk of 43 44 transmission to infants [11,12]. Suboptimal adherence or discontinuation of ART endangers

45 maternal health, even increasing the odds of death [13,14]; with mothers often the primary familial
46 caregivers, poor maternal health, in turn, endangers their children's health.

47

To achieve the United Nations Programme on HIV/AIDS (UNAIDS) 95-95-95 goals for the year 2030—that 95% of those living with HIV know their status, have ART, and be virally suppressed—it is crucial to assess ART retention, adherence, and viral suppression among all key populations, including postnatal women [15,16]. We retrospectively measured postpartum retention, ART adherence, and viral suppression in an HIV care program in Nigeria. We additionally identified demographic and clinical risk factors for postpartum LTFU and unsuppressed viral load.

55

56

57 Materials and methods

58 **Patient population**

59 The study population included 1535 HIV-1-positive pregnant women \geq 18 years of age 60 attending the antenatal HIV clinic at Jos University Teaching Hospital (JUTH), north-central 61 Nigeria, with a recorded delivery between 2013 and 2017. Demographic and clinical data were 62 extracted from the clinical databases at enrollment in the HIV program, ART initiation, antenatal 63 booking, delivery, and up to 24 months after delivery, with data censored on 31 December 2019. 64 The data were collected for routine clinical management as part of the APIN Public Health 65 Initiatives HIV program at JUTH, supported by the President's Emergency Plan for AIDS Relief 66 (PEPFAR).

68	Per routine care, patients enrolled in the adult HIV clinic at JUTH had scheduled medical
69	examinations with CD4+ T-cell counts every six months, and viral load enumeration every 12
70	months (with enhanced adherence counseling and additional viral load monitoring if viremic). If
71	a patient with HIV became pregnant or a pregnant woman newly tested HIV-positive, they were
72	enrolled in the antenatal HIV clinic at JUTH. After delivery, they transferred back to the general
73	adult HIV clinic for routine HIV care. If a woman receiving antenatal HIV care at JUTH
74	delivered outside of JUTH, their delivery information was recorded when they returned to the
75	clinic with their newborn. All clinical, laboratory, and pharmacy data collected in medical record
76	forms at the adult and antenatal HIV clinics were routinely entered into electronic databases.
77	
78	ART eligibility conformed to the Nigerian National Guidelines for HIV Prevention and
79	Care, which were revised over the study years [17-19]. Between 2013 and 2014, all adults with
80	WHO clinical stage III or IV or CD4+ T-cell counts less than 350 cells/mm ³ were triple ART-
81	eligible. Ineligible pregnant women received zidovudine and lamivudine during pregnancy with
82	single-dose nevirapine at delivery as prophylaxis. In 2014, Nigerian ART eligibility guidelines
83	were revised to include adults with CD4+ T-cell counts less than 500 cells/mm ³ ; to allow for
84	program implementation delays, we considered women meeting these criteria ART-eligible
85	starting 1 January 2015. In 2016, Nigeria expanded eligibility to all pregnant women with HIV
86	per the WHO Option B+ guideline; to allow time for implementation, we considered all women
87	ART-eligible by 1 January 2017.
88	
89	This project was approved by the APIN Public Health Initiatives and Harvard T.H. Chan School

90 of Public Health Institutional Review Boards. Data used were from patients who provided

91 written informed consent for the use of their data for secondary research at the time of

92	enrollment in the HIV	program.	The clinical	records,	which include	d identifiable	information

93 were accessed on June 17, 2020 by the data manager, who assembled the dataset and removed all

- 94 identifiers before statistical analyses.
- 95

96 Measurement and definitions of outcomes

97 **ART adherence**

98 ART adherence was measured using pharmacy refill data [20]. Medication possession 99 ratios (MPR) were calculated as the percentage of all days supplied with ART over the total days 100 in each 6-month postpartum time interval, and were categorized as <80%, 80%-94.9%, and \ge 95%. 101 New patients picked up ART monthly during their first year; if adherent and virally suppressed, 102 they could pick up a two-month supply bimonthly. Patients were excluded from the adherence 103 analysis if they were receiving ART prophylactically. Patients who became LTFU during the study 104 period were included in the analysis up to the time interval during which their last clinic visit was 105 recorded.

106

107 Loss to follow-up

While LTFU definitions vary by program and over the years, overlapping with current
definitions of interruption in treatment, we defined LTFU conservatively as a sustained absence of
≥180 days since the last clinical and pharmacy visits, assessed at 24 months postpartum [21].
Patients who were ART-ineligible or reported transferring to alternate clinics during the analyzed
period were removed from evaluation of this outcome.

114 Unsuppressed viral load

Following program cut-offs, an unsuppressed viral load was defined as a viral load measurement of ≥ 1000 viral copies/mL. Since laboratory tests were not always performed precisely at the study time points, we used the viral load results within the following timeframes that were closest to baseline, month 12, and month 24: 6 months before delivery to 15 days postpartum, 6-18 months postpartum, and 18-30 months postpartum, respectively.

120

121 Independent variables

122 Baseline age, HIV clinical (prior years of ART, years since HIV diagnosis, delivery year, 123 ART regimen, viral load, CD4+ T-cell count, and ART adherence between 0-6 months 124 postpartum), and antenatal (surviving children, gestational age at antenatal booking, total antenatal 125 visits, delivery site, delivery year, delivery type, term delivery, infant birthweight, and infant 126 feeding method) factors were evaluated for associations with outcomes, with baseline defined as 127 at or closest to the time of delivery. Other demographic information (marital status, education, and 128 occupation) and previous ART experience were only collected in the ART enrollment record, 129 which was completed whenever the patient initiated ART in the PEPFAR program.

130

131 Statistical analysis

Continuous variables were converted to ordinal by interquartile range (IQR) and clinical categories. Retention, ART adherence, and viral suppression were measured using simple descriptive statistics. Bivariate analyses were performed to identify potential associations between the independent variables and the following outcomes: LTFU and unsuppressed viral load.

Exposure variables with a chi-square p-value <0.2 (or Fisher's exact for frequencies \leq 5) were evaluated in a multiple logistic regression model and retained in the final model if p \leq 0.05, after backwards elimination. To account for significant missing viral load data, missing baseline viral load results were coded as a separate category, and a sensitivity analysis was performed to compare those with versus those missing postpartum viral load results using bivariate analyses and multiple logistic regression as above. Analysis was conducted with SAS Studio 2020.1.2.

142

143 **Results**

144 **Patient population characteristics**

145 1535 women with delivery records at the JUTH antenatal HIV clinic were included in the 146 analyses (Table 1). The median age at delivery was 33 years (IQR: 29-36). The majority of women 147 were married (66.8%), achieved primary or secondary education (61.7%), held non-income 148 generating occupations (46.2%), and lacked previous ART experience (88.7%) at the time of ART 149 enrollment in the PEPFAR HIV program. Most women were ART-eligible (90.6%) at the time of 150 delivery. The median time since HIV diagnosis was 6.3 years (IQR: 3.3-8.4) and the median 151 duration on ART was 5.6 years (IQR:2.9-8.1). Most patients (91.1%) were receiving an ART 152 regimen without a protease inhibitor at delivery. At delivery, the majority of patients (87.2%) had 153 \geq 200 CD4+ T-cells/mm³ and 51.9% of patients were virally suppressed, with 38.6% of patients 154 missing a viral load result.

156	Table 1. Baseline Charact	teristics of Study Population			
	Demographic		Number	%	
	Age at Delivery	Missing Data	1		

	≤29 years	395	25.75
	30-33 years	458	29.86
	34-36 years	326	21.25
	≥37 years	355	23.14
Marital Status ^a	Missing Data	39	
	Single/Separated/Divorced	496	33.16
	Married	1000	66.84
Education Status ^a	Missing Data	42	
	No Formal	130	8.71
	Primary/Secondary	921	61.69
	Tertiary	442	29.6
Occupation Status ^a	Missing Data	45	
	Non-income Generating	688	46.17
	Professional/Manager	356	23.89
	Labor/Service	446	29.93
Clinical HIV/ART ^b		Number	%
Previous ART Experience ^a	Missing Data	39	
	ART Naive	1327	88.7
	ART Experienced	169	11.3
Time since HIV Diagnosis	Missing Data	55	
	Diagnosis during Pregnancy/Delivery	144	9.73
	≤3 years Prepartum	198	13.38
	3.1-6 years Prepartum	367	24.8
	6.1-8 years Prepartum	337	22.77
	>8 years Prepartum	434	29.32
Duration on ART prior to Delivery	Missing Data	95	
5	<4 years	487	33.82
	4-8 years	586	40.69
	>8 years	367	25.49
Drug Regimen at Delivery	Missing Data	30	
	Regimens without a Protease Inhibitor	1371	91.1
	Regimens with a Protease Inhibitor	134	8.9
Viral Load at Delivery	Missing Data	592	38.57
-	Suppressed (<1000 copies/mL)	797	51.92
	Unsuppressed (≥1000 copies/mL)	146	9.51
CD4 Cell Count at Deliverv		146 147	9.51
CD4 Cell Count at Delivery	Missing Data	147	
CD4 Cell Count at Delivery			9.51 12.82 28.96

	>500 cells/mm ³	387	27.88
Antenatal		Number	%
Plurality	Missing Data	175	
	1	1338	98.38
	2-3	22	1.62
Gravidity	Missing Data	95	
	1	96	6.67
	2-3	523	36.32
	≥4	821	57.01
Previous Live Births	Missing Data	147	
	0	198	14.27
	1	301	21.69
	≥2	889	64.05
Surviving Children	Missing Data	149	
8-1-1	0	239	17.24
	1-2	725	52.31
	>2	422	30.45
Previous Abortion	Missing Data	198	
	0	797	59.61
	≥1	540	40.39
Trimester at First Antenatal Care Visit	Missing Data	11	
	1st (≤12 weeks)	113	7.41
	2nd (13-26 weeks)	989	64.9
	3rd (≥27 weeks)	422	27.69
Total Antenatal Care Visits	1-2	329	21.43
	3-4	606	39.48
	>4	600	39.09
Delivery		Number	%
Year of Delivery	2013-2014	745	48.53
5	2015-2017	790	51.47
Delivery Site	Missing Data	14	
,	Jos University Teaching Hospital	276	18.15
	Other Clinic/Home/Road	1245	81.85
Delivery Type	Missing Data	108	
	Vaginal/Assisted	1086	76.1
	Emergency/Elective C-Section	341	23.9
Gestational Age at Delivery	Missing Data	127	
	Pre-term (<37 weeks)	64	4.55

Infant Birthweight	Missing Data	132	
	Low (≤2.5 kg)	375	26.73
	Normal/High (>2.5 kg)	1028	73.27
Infant Feed Method at Delivery	Missing Data	33	
	Exclusive Breast Feeding	1345	89.55
	Breast Milk Substitute Supplement	157	10.45

¹⁵⁷ ^aDenotes variables collected from the ART enrollment record, which was completed when the

158 patient initiated ART in the APIN PEPFAR program. All other variables collected at antenatal

159 booking or at delivery, as indicated.

160 ^bART, antiretroviral therapy.

161 162

163 **ART retention**

Among 1497 ART-eligible women at delivery, 1342 (89.6%) were retained in care at 24

165 months postpartum (Fig 1). Cumulatively, 51 (3.4%) women reported transferring to another

166 clinic, and 104 (7.0%) were LTFU.

167

168 Fig 1. Study Population Flowchart.

169 Abbreviations: JUTH, Jos University Teaching Hospital; LTFU, lost to follow-up.

170

171 ART adherence over time

Among ART-eligible women retained in each period, mean MPR over time was 95.5%

173 (95% CI 95.0%–96.1%) between 0-6 months, 93.9% (95% CI 93.1%–94.6%) between 6-12

174 months, 92.0% (95% CI 91.0%–92.9%) between 12-18 months, and 91.0% (95% CI 90.0%–

175 91.9%) between 18-24 months postpartum. The proportion of postpartum patients with \ge 95%

176 MPR decreased from 79.0% to 69.1% while the proportion of patients with <80% MPR

177 increased from 7.4% to 15.7% over the study period (Fig 2).

178

Fig 2. Medication Possession Ratio. The proportion of patients with <80%, 80%-94.9%, and $\geq 95\%$ MPR between 0-6, 6-12, 12-18, and 18-24 months after delivery among ART-eligible patients retained in each period. Abbreviations: MPR, medication possession ratio; n, number of patients retained.

183

184 Viral load suppression

Among all 1497 ART-eligible patients, 926 (61.9%) had a baseline viral load result, 688 (50.0%) had a viral load result at 12 months postpartum, and 858 (57.3%) had a viral load result

187 at 24 months postpartum. Mean viral loads were 26,993 viral copies/mL (95% CI 12,551–

188 41,435) at delivery, 9206 viral copies/mL (95% CI 2107-16,305) at 12 months, and 5796 viral

189 copies/mL (95% CI 3256-8336) at 24 months. Among those with VL results, the proportion of

190 patients with a suppressed viral load was 84.9% (786/926) at delivery, 85.8% (590/688) at 12

191 months, and 88.7% (761/858) at 24 months.

192

193 Risk factors for LTFU

In chi-square bivariate analysis (Table 2), LTFU was potentially associated with the
following variables: maternal age, previous ART experience, years since HIV diagnosis, duration
on ART, viral load at delivery, CD4+ T-cell count at delivery, total antenatal care visits, abortion
history, gravidity, total surviving children, and delivery site.

198

199 Table 2. Bivariate Analysis of Loss to Follow Up

	Retai	ned	Loss to Follow Up		Total	chi- square test
	Number	%	Numbe r	%	Numbe r	p-value
Demographic						
Age at Delivery						
≤29 years	311	88.6%	40	11.4%	351	0.0044
30-33 years	412	93.4%	29	6.6%	441	
34-36 years	298	95.2%	15	4.8%	313	
≥37 years	320	94.1%	20	5.9%	340	
Marital Status ^a						
Single/Separated/Divorced	441	93.2%	32	6.8%	473	0.6998
Married	873	92.7%	69	7.3%	942	
Education Status ^a						
No Formal	107	90.7%	11	9.3%	118	0.3037
Primary/Secondary	808	92.4%	66	7.6%	874	
Tertiary	397	94.3%	24	5.7%	421	
Occupation Status ^a						
Non-income Generating	607	93.0%	46	7.0%	653	0.3927
Professional/Manager	314	94.3%	19	5.7%	333	
Labor/Service	388	91.7%	35	8.3%	423	
Clinical HIV/ART ^b						
Previous ART Experience ^a						
ART Naive	1167	92.5%	94	7.5%	1261	0.1856
ART Experienced	147	95.5%	7	4.5%	154	
Time since HIV Diagnosis						
Diagnosis during Pregnancy/Delivery	111	88.1%	15	11.9%	126	0.0215
≤3 years Prepartum	163	90.1%	18	9.9%	181	
3.1-6 years Prepartum	324	92.3%	27	7.7%	351	
6.1-8 years Prepartum	303	93.8%	20	6.2%	323	
>8 years Prepartum	401	95.5%	19	4.5%	420	
Duration on ART prior to Delivery						
<4 years	406	90.0%	45	10.0%	451	0.0052
4-8 years	532	94.0%	34	6.0%	566	
>8 years	340	95.5%	16	4.5%	356	
Drug Regimen at Delivery						
Regimens without a Protease Inhibitor	1226	93.7%	82	6.3%	1308	0.4657

Regimens with a Protease Inhibitor Viral Load at Delivery	116	92.1%	10	7.9%	126	
Suppressed (<1000 copies/mL)	724	95.1%	37	4.9%	761	0.0011
Unsuppressed (≥1000 copies/mL)	121	91.7%	11	8.3%	132	
Missing Data	497	89.9%	56	10.1%	553	
CD4 Cell Count at Delivery						
<200 cells/mm ³	153	89.0%	19	11.0%	172	0.012
200-349 cells/mm ³	359	93.2%	26	6.8%	385	
350-500 cells/mm ³	386	95.8%	17	4.2%	403	
>500 cells/mm ³	342	95.0%	18	5.0%	360	
Antenatal						
Plurality						
1	1169	92.7%	92	7.3%	1261	1°
2-3	19	95.0%	1	5.0%	20	
Gravidity						
1	83	96.5%	3	3.5%	86	0.0527°
2-3	457	94.4%	27	5.6%	484	
≥4	717	91.3%	68	8.7%	785	
Previous Live Births						
0	166	92.2%	14	7.8%	180	0.2881
1	267	95.0%	14	5.0%	281	
≥2	779	92.3%	65	7.7%	844	
Surviving Children						
0	201	93.5%	14	6.5%	215	0.1455
1-2	645	93.9%	42	6.1%	687	
>2	364	90.8%	37	9.2%	401	
Previous Abortion						
0	696	93.9%	45	6.1%	741	0.0764
≥1	473	91.3%	45	8.7%	518	
Trimester at First Antenatal Care Visit						
1st (≤12 weeks)	99	94.3%	6	5.7%	105	0.0705
2nd (13-26 weeks)	872	93.7%	59	6.3%	931	
$3rd (\geq 27 weeks)$	360	90.2%	39	9.8%	399	
	500	90.270	57	2.070	577	
Total Antenatal Care Visits	777	00 20/	26	11 70/	200	< 0001
1-2 3-4	273 529	88.3% 92.0%	36 46	11.7% 8.0%	309 575	<.0001
3-4 >4	529 540	92.0% 96.1%	46 22	8.0% 3.9%	575 562	
~ +	540	20.170		3.7%	502	

Delivery						
Year of Delivery						
2013-2014	637	92.6%	51	7.4%	688	0.7571
2015-2017	705	93.0%	53	7.0%	758	
Delivery Site						
Jos University Teaching Hospital	254	96.6%	9	3.4%	263	0.0122
Other Clinic/Home/Road	1079	92.2%	91	7.8%	1170	
Delivery Type						
Vaginal/Assisted	943	92.1%	81	7.9%	1024	0.085
Emergency/Elective C- Section	301	95.0%	16	5.0%	317	
Gestational Age at Delivery						
Pre-term (<37 weeks)	57	95.0%	3	5.0%	60	0.7952
Full-term (≥37 weeks)	1174	92.8%	91	7.2%	1265	
Infant Birthweight						
Low (≤2.5 kg)	320	90.9%	32	9.1%	352	0.079
Normal/High (>2.5 kg)	908	93.7%	61	6.3%	969	
Infant Feed Method at						
Delivery						
Exclusive Breast Feeding	1180	93.1%	87	6.9%	1267	0.797
Breast Milk Substitute Supplement	137	92.6%	11	7.4%	148	

^aDenotes variables collected from the ART enrollment record, which was completed when the patient initiated ART in the APIN PEPFAR program. All other variables collected at antenatal

202 booking or at delivery, as indicated.

²⁰³ ^bART, antiretroviral therapy.

²⁰⁴ ^cFisher's exact test p-values reported when contingency table observations were less than or ²⁰⁵ equal to five.

206

207 1303 patients were retained in the final multiple logistic regression model for risk factors

- associated with LTFU (Fig 3). A longer time since HIV diagnosis (3.1-6 years, aOR=0.421, 95%
- 209 CI 0.202-0.876; 6.1-8 years, aOR=0.347, 95% CI 0.161-0.745; >8 years, aOR=0.231, 95% CI
- 210 0.106-0.502) and having attended >4 antenatal care visits (aOR=0.312, 95% CI 0.171-0.568)
- 211 significantly decreased risk of becoming LTFU. Alternatively, having gravidity of ≥ 4
- 212 pregnancies (aOR=3.733, 95% CI 1.095-12.73) and delivering outside of JUTH (aOR=2.752,
- 213 95% CI 1.166-6.497) significantly increased risk for becoming LTFU.

214

215	Fig 3. Risk Factors for Postpartum Loss to Follow-Up. Final multiple logistic regression
216	model shows significant risk factors for women becoming lost to follow-up from the Jos
217	University Teaching Hospital HIV clinic after delivery up to 24 months postpartum.
218	Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; ref, reference group.
219	

220 Risk factors for unsuppressed viral load

In chi-square bivariate analysis (Table 3), unsuppressed viral load was potentially associated with the following variables : marital status, education level, occupation, previous ART experience, delivery site, total antenatal care visits, gestational age at antenatal booking,

224 previous live births, surviving children, abortion history, drug regimen, and infant feeding

225 method.

	Suppressed Viral Load			Unsuppressed Viral Load		chi- square test	
	Number	%	Number	%	Number	p-value	
Demographic							
Age at Delivery							
≤29 years	189	85.5%	32	14.5%	221	0.4123	
30-33 years	263	83.2%	53	16.8%	316		
34-36 years	182	81.6%	41	18.4%	223		
≥37 years	228	86.7%	35	13.3%	263		
Marital Status ^a							
Single/Separated/Divorced	305	86.9%	46	13.1%	351	0.0663	
Married	535	82.4%	114	17.6%	649		
Education Status ^a							
No Formal	50	67.6%	24	32.4%	74	0.0002	
Primary/Secondary	522	84.9%	93	15.1%	615		

226 Table 3. Bivariate Analysis of Unsuppressed Viral Load

Tortion	267	06 10/	40	12 60/	200	
Tertiary Occupation Status ^a	267	86.4%	42	13.6%	309	
Occupation Status ^a Non-income Generating	370	81.5%	84	18.5%	454	0.1074
Professional/Manager	217	81.5% 87.5%	84 31	18.5%	434 248	0.1074
Labor/Service	249	87.37% 84.7%	45	12.3%	248 294	
Clinical HIV/ART ^b	247	04.770		13.370	2/4	
Previous ART Experience ^a						
ART Naive	749	84.7%	135	15.3%	884	0.0828
ART Experienced	91	78.4%	25	21.6%	116	0.0020
Time since HIV Diagnosis	71	70.470	25	21.070	110	
Diagnosis during Pregnancy/Delivery	61	83.6%	12	16.4%	73	0.3027
≤3 years Prepartum	104	86.7%	16	13.3%	120	
3.1-6 years Prepartum	199	84.7%	36	15.3%	235	
6.1-8 years Prepartum	169	79.7%	43	20.3%	212	
>8 years Prepartum	305	86.2%	49	13.8%	354	
Duration on ART prior to Delivery		00.270	.,	121070		
<4 years	243	85.3%	42	14.7%	285	0.2335
4-8 years	310	81.6%	70	18.4%	380	
>8 years	264	86.0%	43	14.0%	307	
Drug Regimen at Delivery						
Regimens without a Protease Inhibitor	788	85.2%	137	14.8%	925	0.0143
Regimens with a Protease Inhibitor	75	75.8%	24	24.2%	99	
Viral Load at Delivery						
Suppressed (<1000 copies/mL)	509	91.7%	46	8.3%	555	<.0001
Unsuppressed (≥1000 copies/mL)	30	39.0%	47	61.0%	77	
Missing Data	324	82.7%	68	17.3%	392	
CD4 Cell Count at Delivery						
<200 cells/mm ³	64	61.0%	41	39.0%	105	<.0001
200-349 cells/mm ³	210	80.5%	51	19.5%	261	
350-500 cells/mm ³	263	88.9%	33	11.1%	296	
>500 cells/mm ³	248	90.8%	25	9.2%	273	
Adherence 0-6 Months						
Postpartum <95% Medication						
Possession Ratio	160	76.2%	50	23.8%	210	0.0003

≥95% Medication	703	86.4%	111	13.6%	814	
Possession Ratio Antenatal						
Plurality						
1	735	83.0%	151	17.0%	886	0.4878°
2-3	14	93.3%	1	6.7%	15	
Gravidity						
1	59	89.4%	7	10.6%	66	0.0751
2-3	295	87.0%	44	13.0%	339	
≥4	450	82.1%	98	17.9%	548	
Previous Live Births						
0	121	90.3%	13	9.7%	134	0.0226
1	172	88.2%	23	11.8%	195	
≥2	486	82.4%	104	17.6%	590	
Surviving Children						
0	133	85.8%	22	14.2%	155	0.0232
1-2	417	87.2%	61	12.8%	478	
>2	227	79.9%	57	20.1%	284	
Previous Abortion						
0	436	82.4%	93	17.6%	529	0.0101
≥1	315	88.7%	40	11.3%	355	
Trimester at First Antenatal Care Visit						
1st (≤12 weeks)	67	80.7%	16	19.3%	83	0.0513
2nd (13-26 weeks)	565	86.7%	87	13.3%	652	
3rd (≥27 weeks)	225	80.9%	53	19.1%	278	
Total Antenatal Care Visits						
1-2	176	80.4%	43	19.6%	219	0.1798
3-4	354	85.9%	58	14.1%	412	
>4	333	84.7%	60	15.3%	393	
Delivery						
Year of Delivery						
2013-2014	285	84.1%	54	15.9%	339	0.8984
2015-2017	578	84.4%	107	15.6%	685	
Delivery Site						
Jos University Teaching Hospital	148	80.9%	35	19.1%	183	0.1797
Other Clinic/Home/Road Delivery Type	707	84.9%	126	15.1%	833	
Vaginal/Assisted	585	83.7%	114	16.3%	699	0.2351

Emergency/Elective C- Section	206	86.9%	31	13.1%	237	
Gestational Age at Delivery						
Pre-term (<37 weeks)	35	79.5%	9	20.5%	44	0.3832
Full-term (≥37 weeks)	739	84.5%	136	15.5%	875	
Infant Birthweight						
Low (≤2.5 kg)	193	82.8%	40	17.2%	233	0.5975
Normal/High (>2.5 kg)	580	84.3%	108	15.7%	688	
Infant Feed Method at						
Delivery						
Exclusive Breast Feeding	774	85.3%	133	14.7%	907	0.0069
Breast Milk Substitute Supplement	71	74.7%	24	25.3%	95	

^aDenotes variables collected from the ART enrollment record, which was completed when the patient initiated ART in the APIN PEPFAR program. All other variables collected at antenatal

booking or at delivery, as indicated.

²³⁰ ^bART, antiretroviral therapy.

^cFisher's exact test p-values reported when contingency table observations were less than orequal to five.

- 222
- 233

- patients (Fig 4). Having \geq 95% ART adherence (aOR=0.51, 95% CI 0.319-0.816) and higher
- 236 CD4+ T-cell counts at delivery (200-349 cells/mm³, aOR=0.453, 95%CI 0.252-0.814; 350-500
- 237 cells/mm³, aOR=0.284, 95% CI 0.152-0.528; >500 cells/mm³, aOR=0.235, 95% CI 0.121-0.456)
- 238 were significantly protective against experiencing unsuppressed viral load postpartum.

239 Significant risk factors for this adverse outcome were having an unsuppressed or missing viral

240 load at delivery (aOR=13.128, 95% CI 7.147-24.115 and aOR=2.402, 95% CI 1.534-3.761,

- respectively) and having gravidity of \geq 4 pregnancies (aOR=2.716, 95% CI 1.052-7.015).
- 242
- 243 Fig 4. Risk Factors for Postpartum Unsuppressed Viral Load. Final multiple logistic
- regression model shows significant risk factors for viral load non-suppression after delivery up to

24 months postpartum. Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; ref,reference group.

247

248	Our sensitivity analysis compared 422 women missing vs. 1024 women not missing
249	postpartum viral load data (Table 4). Maternal age, marital status, time since HIV diagnosis,
250	ART adherence, ART duration, viral load at delivery, CD4+ T-cell count at delivery, delivery
251	year, and delivery type were potentially associated with missing data in bivariate analyses. The
252	final multiple logistic regression model indicated that missing postpartum viral load data had
253	significant inverse associations with having been on ART >8 years, \geq 95% MPR, and delivery
254	year after 2014.

255

Table 4. Sensitivity Analysis – Patients with Postpartum Viral Load Data vs. Patients Missing Data

	Viral Load	Viral Load	chi- square		
	Recorded	Missing	test	Multiple Logistic R	egression
	Number (%)	Number (%)	p-value	aOR ^a (95% CI ^b)	p-value
Demographic					
Age at Delivery					
≤29 years	221 (63.0%)	130 (37.0%)	0.0005		
30-33 years	316 (71.7%)	· · · · · ·			
34-36 years	223 (71.2%)	90 (28.8%)			
≥37 years	263 (77.4%)	77 (22.6%)			
Marital Status ^c					
Single/Separated/Divorced	351 (74.2%)	122 (25.8%)	0.0384		
Married	649 (68.9%)	293 (31.1%)			
Education Status ^c					
No Formal	74 (62.7%)	44 (37.3%)	0.0762		
Primary/Secondary	615 (70.4%)	259 (29.6%)			
Tertiary	309 (73.4%)	112 (26.6%)			
Occupation Status ^c					
Non-income Generating	454 (69.5%)	199 (30.5%)	0.2213		

Professional/Manager	248 (74.5%)	85 (25.5%)			
Labor/Service	294 (69.5%)	129 (30.5%)			
Clinical HIV/ART ^d					
Previous ART Experience ^c					
ART Naive	884 (70.1%)	377 (29.9%)	0.1791		
ART Experienced	116 (75.3%)	38 (24.7%)			
Time since HIV Diagnosis					
Diagnosis during			<.0001		
Pregnancy/Delivery	73 (57.9%)	53 (42.1%)			
≤3 years Prepartum	120 (66.3%)	61 (33.7%)			
3.1-6 years Prepartum	235 (67.0%)	116 (33.0%)			
6.1-8 years Prepartum	212 (65.6%)	111 (34.4%)			
>8 years Prepartum	354 (84.3%)	66 (15.7%)			
Duration on ART prior to					
Delivery					
<4 years	285 (63.2%)	166 (36.8%)	<.0001	Ref ^e	Ref
4-8 years	380 (67.1%)	186 (32.9%)		0.88 (0.66-1.18)	0.3935
>8 years	307 (86.2%)	49 (13.8%)		0.47 (0.32-0.70)	0.0002
Drug Regimen at Delivery					
Regimens without a			0.0624		
Protease Inhibitor	925 (70.7%)	383 (29.3%)	0.0021		
Regimens with a Protease					
Inhibitor	99 (78.6%)	27 (21.4%)			
Viral Load at Delivery					
Suppressed (<1000	555 (72 00/)	206(27.10/)	0.0030		
copies/mL)	555 (72.9%)	206 (27.1%)			
Unsuppressed (≥1000					
copies/mL)	77 (58.3%)	55 (41.7%)			
Missing Data	392 (70.9%)	161 (29.1%)			
CD4 Cell Count at Delivery					
<200 cells/mm ³	105 (61.0%)	67 (39.0%)	0.0015		
200-349 cells/mm ³	261 (67.8%)	124 (32.2%)			
350-500 cells/mm ³	296 (73.4%)	107 (26.6%)			
>500 cells/mm ³	273 (75.8%)	87 (24.2%)			
Adherence 0-6 Months					
Postpartum					
<95% Medication	210(64.20/)	117 (25 00/)	0.0022	Dof	Dof
Possession Ratio	210 (64.2%)	117 (35.8%)	0.0023	Ref	Ref
≥95% Medication					
Possession Ratio	814 (72.9%)	302 (27.1%)		0.40 (0.28-0.56)	< 0.001
Antenatal Plurality					

Plurality

1	886 (70.3%)	375 (29.7%)	0.8069^{f}		
2-3	15 (75.0%)	5 (25.0%)			
Gravidity					
1	66 (76.7%)	20 (23.3%)	0.4031		
2-3	339 (70.0%)	145 (30.0%)			
≥4	548 (69.8%)	237 (30.2%)			
Previous Live Births	()	()			
0	134 (74.4%)	46 (25.6%)	0.4385		
1	195 (69.4%)	86 (30.6%)			
≥2	590 (69.9%)	254 (30.1%)			
Surviving Children		201 (001170)			
0	155 (72.1%)	60 (27.9%)	0.7587		
1-2	478 (69.6%)	209 (30.4%)			
>2	284 (70.8%)	117 (29.2%)			
Previous Abortion	(/ 0.0 / 0)				
0	529 (71.4%)	212 (28.6%)	0.2753		
≥1	355 (68.5%)	163 (31.5%)			
Trimester at First Antenatal	555 (00.570)	105 (51.570)			
Care Visit					
1st (≤12 weeks)	83 (79.0%)	22 (21.0%)	0.1409		
2nd (13-26 weeks)	652 (70.0%)	279 (30.0%)			
3rd (≥27 weeks)	278 (69.7%)	121 (30.3%)			
Total Antenatal Care Visits	()	()			
1-2	219 (70.9%)	90 (29.1%)	0.815		
3-4	412 (71.7%)	163 (28.3%)			
>4	393 (69.9%)	169 (30.1%)			
Delivery	<u>_</u>				
Year of Delivery					
2013-2014	339 (49.3%)	349 (50.7%)	<.0001	Ref	Ref
2015-2017	685 (90.4%)	73 (9.6%)		0.10 (0.07-0.13)	< 0.001
Delivery Site		· · · ·			
Jos University Teaching			0 6024		
Hospital	183 (69.6%)	80 (30.4%)	0.6024		
Other Clinic/Home/Road	833 (71.2%)	337 (28.8%)			
Delivery Type					
Vaginal/Assisted	699 (68.3%)	325 (31.7%)	0.0276		
Emergency/Elective C-					
Section	237 (74.8%)	80 (25.2%)			
Gestational Age at Delivery					
Pre-term (<37 weeks)	44 (73.3%)	16 (26.7%)	0.4943		
Full-term (≥37 weeks)	875 (69.2%)	390 (30.8%)			
	0,0 (0).2,0)	270 (20.070)			

	Infant Birthweight Low (≤2.5 kg)	233 (66.2%)	119 (33.8%)	0.0927			
	Normal/High (>2.5 kg)	()	281 (29.0%)				
	Infant Feed Method at	000 (71.070)	201 (29.070)				
	Delivery						
	Exclusive Breast Feeding	907 (71.6%)	360 (28.4%)	0.0611			
	Breast Milk Substitute	· · ·					
	Supplement	95 (64.2%)	53 (35.8%)				
258	^a aOR, adjusted odds ratio.						
259	^b CI, confidence interval.						
260	^c Denotes variables collected from the ART enrollment record, which was completed when the						
				• • • • • • • • • • • •			

261 patient initiated ART in the APIN PEPFAR program. All other variables collected at antenatal

booking or at delivery, as indicated.

²⁶³ ^dART, antiretroviral therapy.

^eref, reference category.

²⁶⁵ ^fFisher's exact test p-values reported when contingency table observations were less than or

equal to five.

267

268 **Discussion**

269 To our knowledge, this retrospective analysis is the first to quantify both ART adherence

and viral suppression up to 24 months postpartum and identify risk factors for LTFU and

271 unsuppressed viral load in postpartum women with HIV in Nigeria.

272

In this study, 69.1% of patients had ≥95% MPR by 24 months postpartum–a proportion
comparable to numbers observed in other sub-Saharan countries. Studies in Malawi using
prescription pick-up data and South Africa and Zambia using self-reported adherence found 67%,
63.9%, and 70.5% of postpartum women with optimal adherence, respectively [22–24].
Definitions for optimal adherence varied slightly between 90% in the Malawi study and 100% in
the South Africa and Zambia studies. We found a lower proportion of adherent postpartum women
than a study in Abuja, Nigeria which found 82.9% adherent women using pill count [25].

Lower adherence rates in postpartum women compared with pregnant women with HIV have been documented [26]. We found a downward trend in ART adherence over the 24 months postpartum, from 79.0% of women with \geq 95% MPR between months 0-6 to 69.1% of women with \geq 95% MPR between months 18-24 postpartum. This postpartum decline again mimics the longitudinal trends of other sub-Saharan countries and identifies a crucial time period for intervention [10,23,24,27].

287

288 The cumulative percentage of patients LTFU at 24 months postpartum in this study was 289 6.9%. This proportion is significantly lower than rates in other sub-Saharan countries such as 290 Ethiopia and Malawi, where LTFU has ranged from 23%-24.5% [23,24,28]. The proportion LTFU 291 in the general adult population with HIV in Nigeria has likewise been reported to be much higher, 292 at 28% [29]. The focus on MTCT prevention at JUTH, through the APIN Public Health Initiatives, 293 may have contributed to this improved retention among postpartum patients. Postpartum women 294 with HIV may also be more motivated to continue ART (despite the difficulty in maintaining 295 optimal adherence) during the first 24 months postpartum, while their infants are still being 296 monitored for HIV infection; because our data were censored at 24 months, we could not assess 297 outcomes afterward.

298

This study established risk factors for postpartum women becoming LTFU, previously unidentified in this patient population. Past studies have identified demographic determinants (i.e., younger age) and clinical determinants (i.e., viremia and missing CD4+ T-cell counts at delivery) as risk factors for pregnant women becoming LTFU after birth [30,31]. Our study found the most significant risk factors for LTFU among postpartum patients were related to a patient's

304 engagement and amount of contact time with the HIV clinic and antenatal care before delivery. 305 Having a more recent HIV diagnosis, fewer antenatal care visits, and a delivery outside of JUTH 306 increased the risk of LTFU. Higher gravidity also increased the risk of LTFU; women with prior 307 pregnancies likely have children to care for at home, and less time to care for their own health. 308 Strategies for retaining the postpartum population in HIV care should, therefore, identify and 309 engage these high-risk patients with enhanced adherence counseling during pregnancy and in the 310 first postpartum year. While costly, studies indicate that patient tracing and repeated home visits 311 are successful methods for reconnecting with patients after becoming LTFU [32,33].

312

313 Our study found 85.8% viral suppression at month 12 and 88.7% viral suppression at month 314 24 postpartum among those with viral load results. These numbers fall short of the 95% UNAIDS 315 target for viral suppression. In comparison, South African studies found 14.7%-14.8% postpartum 316 viral non-suppression [34,35]. Importantly, in our study, of the 1497 ART-eligible, only 50.0% 317 had viral load results at month 12, and 57.3% had viral load results at month 24. Viral load 318 monitoring is a challenge in many resource-limited settings. A South African study found only 319 12.6% of women had a viral load test by 9 months postpartum [34]. In our sensitivity analysis, 320 patients missing postpartum viral load results were more likely to have shorter duration on ART 321 and poorer adherence; therefore, our viral suppression rates in the postpartum population are likely 322 overestimates. This may also explain why the proportion of patients with viral suppression did not 323 decrease over the 24 months despite declining adherence. The 2018 Nigerian HIV/AIDS Indicator 324 and Impact Survey found 77.1% viral suppression among adults on ART, which may be closer to 325 what we might have observed in our study if viral load results were not missing [36].

327 Previous studies have identified younger age, shorter ART duration, and unsuppressed viral 328 load at delivery as risk factors for unsuppressed viral load postpartum [12,37,38]. Our study 329 similarly found unsuppressed viral load at delivery as a predictor of unsuppressed postpartum viral 330 load; as unsuppressed viral load may indicate drug resistance, closer monitoring of these patients 331 is needed. We additionally identified having poorer adherence, lower baseline CD4+ T-cell count, 332 and more prior pregnancies as risk factors for unsuppressed postpartum viral load. Higher gravidity 333 was a significant risk factor for both LTFU and unsuppressed viral load, and women with more 334 children at home should be targeted for enhanced adherence counseling and supportive services.

335

336 While our study confirmed gaps in postpartum retention and adherence, solutions are not 337 straightforward. Results of trials implementing phone calls or text message reminders to improve 338 postpartum retention have been mixed [39–41]. Integrated care where mothers and infants are seen 339 together at the PMTCT clinic postpartum has shown some promise. One study found 90% median 340 ART adherence postpartum with 91% viral suppression in Uganda, where care was integrated, 341 compared with 40% adherence postpartum with 57% viral suppression in South Africa, where 342 women transferred to general ART services immediately after delivery [42]. A clinical trial found 343 that integration of postpartum maternal and infant HIV care improved both retention and viral 344 suppression at 12 months postpartum, but benefits did not continue after transfer to general ART 345 services [43,44]. Trials implementing 'mentor mothers' and community-based 'adherence clubs' 346 have demonstrated improvements in viral suppression up to 24 months postpartum [45,46].

347

While the large study population size and 24-month duration of individual postpartum follow-up strengthened this study, limitations remained. Our major limitation was missing data, with around 40% of viral load results missing at delivery and month 24, and 50% at month 12.

351 Although viral load is the gold standard measure of ART effectiveness, it was not performed 352 following the 12-monthly schedule. To accommodate for missing viral load data, missing baseline 353 values were categorized separately and postpartum viral load time points were combined for the 354 analyses, and a sensitivity analysis was performed to compare those with and without postpartum 355 viral load results. Additionally, while MPR was used as a proxy measurement for ART adherence, 356 without direct observation, it is possible that some patients picked up medication but did not adhere 357 to their prescribed regimen. This study also exclusively focused on JUTH, a large urban tertiary 358 hospital with an established HIV clinic since 2004, which may not be representative of Nigeria.

359

360 Finally, the impact of this study is limited by a lack of qualitative data. In addition to 361 demographic and clinical barriers to ART retention and adherence like the ones we identified, 362 significant individual (i.e., depression, understanding of ART), sociocultural (i.e., stigma, non-363 disclosure of HIV status), economic (i.e., financial resources, transportation), and structural (i.e., 364 health worker attitudes) barriers persist for many people living with HIV in Nigeria and globally 365 [25,47–49]. Solutions to these long-standing barriers are elusive, as a Nigerian study that attempted 366 a "continuous quality improvement" intervention found.[50] But so long as these barriers exist, 367 any interventions may prove ultimately ineffective.

368

369 Conclusions

As the risks for MTCT and adverse maternal health outcomes remain after birth, evaluation of retention, ART adherence, and viral suppression among postpartum mothers is critical. The cumulative percent of patients LTFU two years postpartum was lower for this Nigerian study population compared with postpartum patients in other sub-Saharan countries. As engagement

with HIV and antenatal care decreases the risk of becoming LTFU, efforts to increase contact time 374 375 among higher-risk patients should be initiated early in pregnancy. ART adherence among our 376 postpartum population correlates with adherence rates in other sub-Saharan countries. The decline 377 in adherence over the 24 months postpartum highlights the critical need for innovative adherence 378 intervention strategies during this period. Viral suppression was considerably lower than the 95% 379 UNAIDS target, and, importantly, the large percentage of missing viral load results was 380 concerning. The causes of low viral load testing, whether policy-, funding-, and/or program-related 381 must be addressed; point-of-care viral load monitoring should be considered.

382

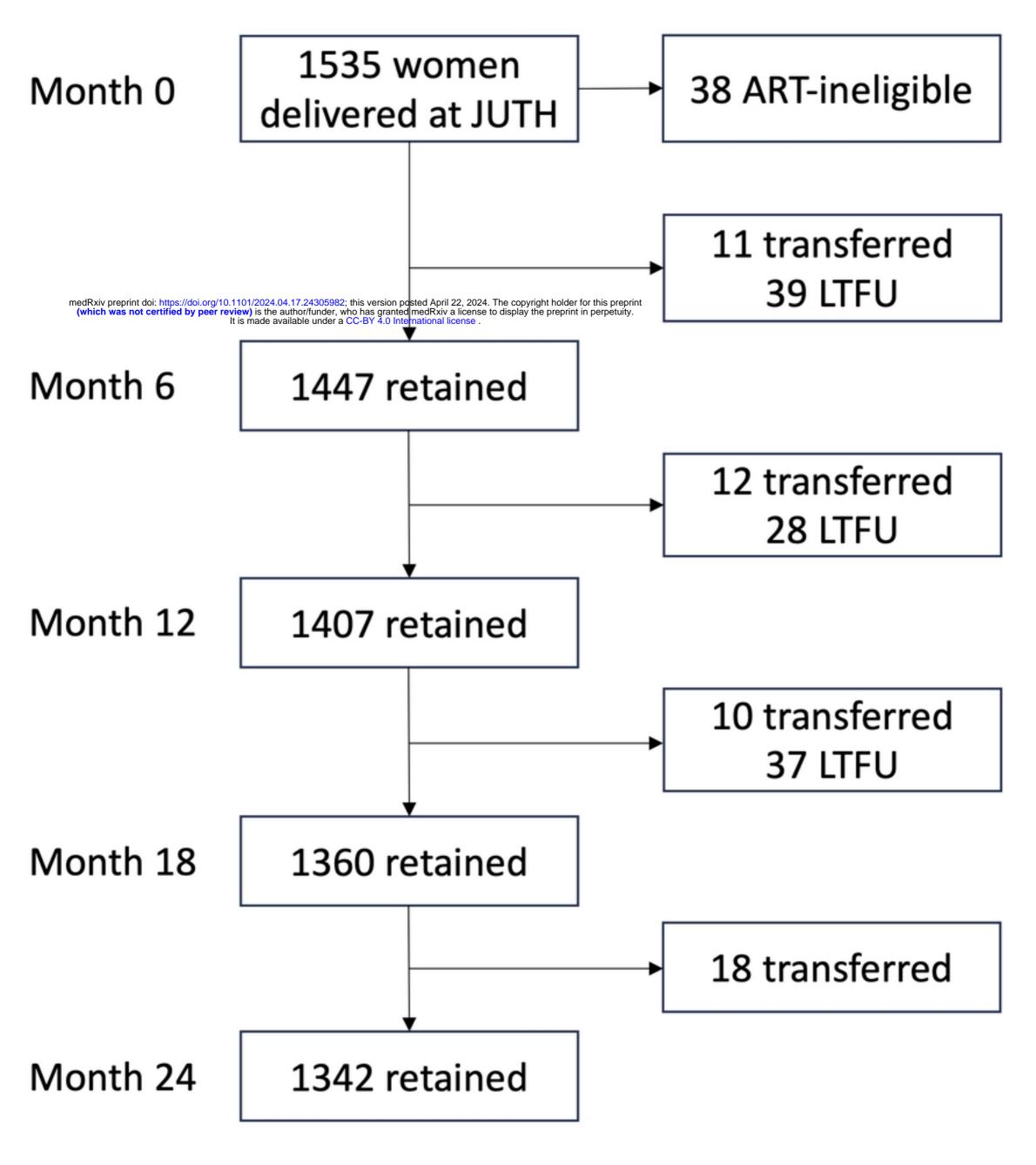
For future studies, we recommend a longer follow-up time past 24 months to evaluate maternal retention, adherence, and viral load suppression after most infants have completed breastfeeding and HIV diagnostic testing. We also recommend including other urban and rural clinics in other regions for a more representative sample of postpartum women with HIV in Nigeria. Finally, we suggest surveys be administered throughout the MTCT prevention cascade to assess barriers to ART adherence and retention in care in this population as a start to understanding needs and considering interventions.

390

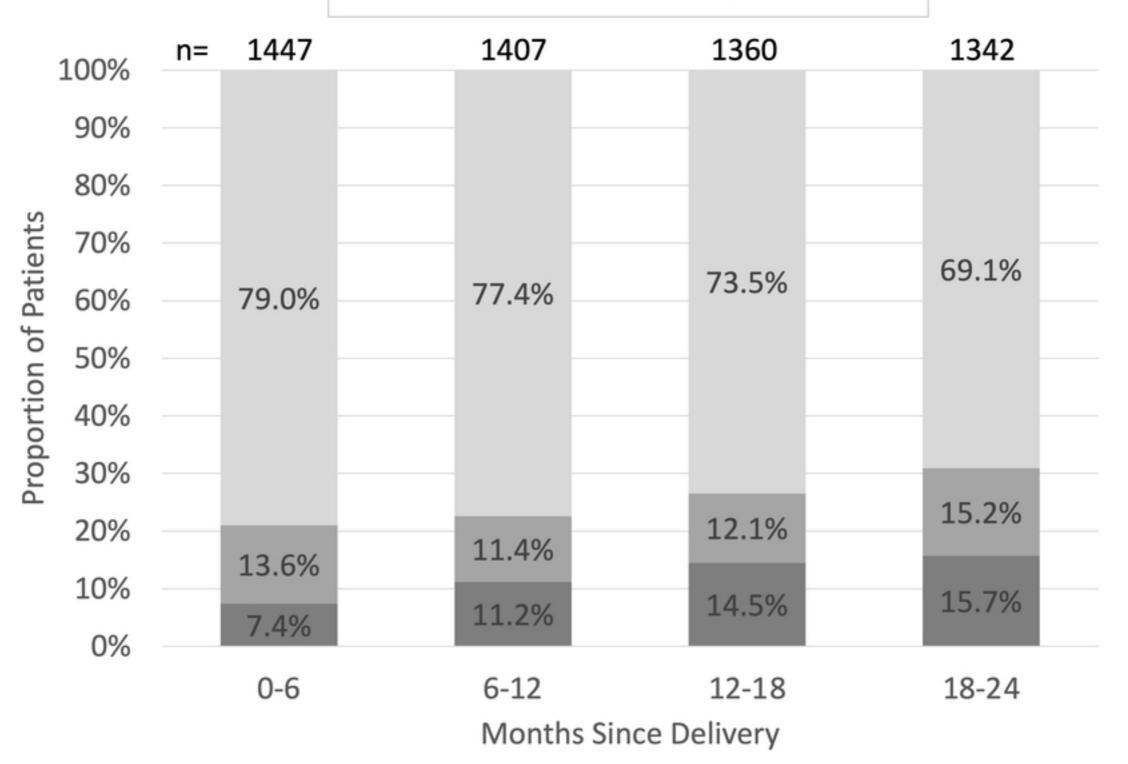
391 Acknowledgments

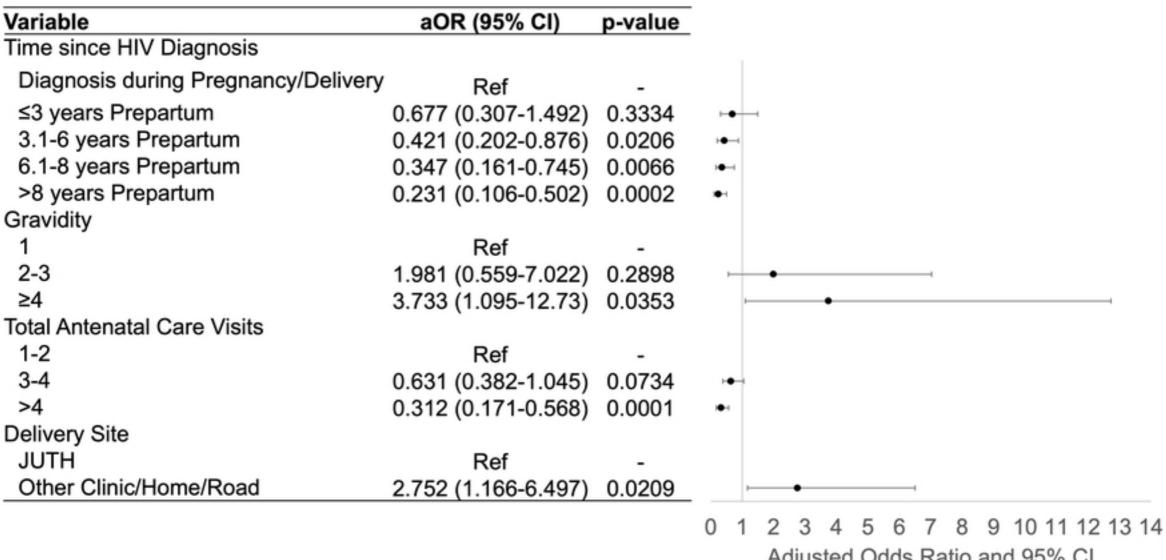
The authors acknowledge with sincere gratitude the leadership, laboratory and data staff, clinicians, and patients of the APIN PEPFAR HIV program at the Jos University Teaching Hospital. We also thank the APIN Public Health Initiatives for providing the data used for the analyses.

396

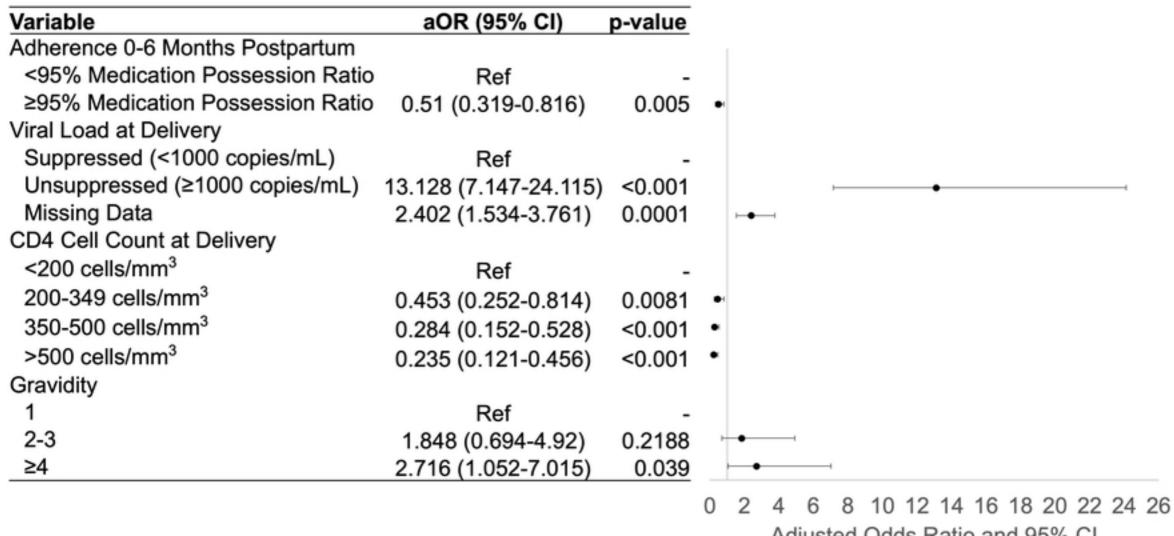

397 **References**

398 200	1.	Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Fact sheet - Latest
399		global and regional statistics on the status of the AIDS epidemic. [Internet]. 2023 [cited
400		2023 Dec 22]. Available from:
401	2	https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf
402	2.	World Health Organization. The top 10 causes of death (Fact sheet) [Internet]. 2020 [cited
403		2023 Dec 22]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-
404	2	10-causes-of-death
405	3.	\mathbf{c}
406		Data book [Internet]. 2021 [cited 2023 Dec 22]. Available from:
407		https://www.unaids.org/sites/default/files/media_asset/JC3032_AIDS_Data_book_2021_En
408	4	.pdf
409	4.	Country progress report - Nigeria. Global AIDS Monitoring 2020 [Internet]. Joint United
410		Nations Programme on HIV/AIDS (UNAIDS). 2020 [cited 2023 Dec 22]. Available from:
411 412		https://www.unaids.org/sites/default/files/country/documents/NGA_2020_countryreport.pd
412	5	Bassey AE, Miteu GD. A review of current trends in HIV epidemiology, surveillance, and
413	5.	control in Nigeria. Ann Med Surg 2012. 2023 May;85(5):1790–5.
414	6	Chen JS, Pence BW, Rahangdale L, Patterson KB, Farel CE, Durr AL, et al. Postpartum HIV
415	0.	care continuum outcomes in the southeastern USA. AIDS Lond Engl. 2019 Mar
410		15;33(4):637–44.
418	7.	
419	7.	Impact of maternal ART on mother-to-child transmission (MTCT) of HIV at six weeks
420		postpartum in Rwanda. BMC Public Health. 2018 Nov 12;18(1):1248.
421	8	Agabu A, Baughman AL, Fischer-Walker C, de Klerk M, Mutenda N, Rusberg F, et al.
422	0.	National-level effectiveness of ART to prevent early mother to child transmission of HIV in
423		Namibia. PloS One. 2020;15(11):e0233341.
424	9.	
425		Combination Antiretroviral Therapy on Mother-to-Child Transmission of HIV-1, Maternal
426		and Infant Virologic Responses to Combination Antiretroviral Therapy, and Maternal and
427		Infant Mortality Rates: A 24-Month Prospective Follow-Up Study at a Primary Health Care
428		Clinic, in Harare, Zimbabwe. AIDS Patient Care STDs. 2022 Apr;36(4):145–52.
429	10.	Larsen A, Magasana V, Dinh TH, Ngandu N, Lombard C, Cheyip M, et al. Longitudinal
430		adherence to maternal antiretroviral therapy and infant Nevirapine prophylaxis from
431		6 weeks to 18 months postpartum amongst a cohort of mothers and infants in South Africa.
432		BMC Infect Dis. 2019 Sep 16;19(Suppl 1):789.
433	11.	Woelk GB, Ndatimana D, Behan S, Mukaminega M, Nyirabahizi E, Hoffman HJ, et al.
434		Retention of mothers and infants in the prevention of mother-to-child transmission of HIV
435		programme is associated with individual and facility-level factors in Rwanda. J Int AIDS
436		Soc. 2016;19(5 Suppl 4):20837.
437	12.	Schrubbe LA, Stöckl H, Hatcher AM, Marston M, Kuchukhidze S, Calvert C. Prevalence
438		and risk factors of unsuppressed viral load among pregnant and breastfeeding women in


439 sub-Saharan Africa: analysis from population-based surveys. AIDS Lond Engl. 2023 Mar 440 15;37(4):659-69. 441 13. Rai S, Mahapatra B, Sircar S, Raj PY, Venkatesh S, Shaukat M, et al. Adherence to 442 Antiretroviral Therapy and Its Effect on Survival of HIV-Infected Individuals in Jharkhand, 443 India. PloS One. 2013;8(6):e66860. 444 14. Kiragga AN, Twinomuhwezi E, Banturaki G, Achieng M, Nampala J, Bagaya I, et al. 445 Outcomes of retained and disengaged pregnant women living with HIV in Uganda. PloS 446 One. 2021;16(5):e0251413. 447 15. Frescura L, Godfrey-Faussett P, Feizzadeh A A, El-Sadr W, Syarif O, Ghys PD, et al. 448 Achieving the 95 95 95 targets for all: A pathway to ending AIDS. PloS One. 449 2022;17(8):e0272405. 450 16. Joint United Nations Programme on HIV/AIDS (UNAIDS). Understanding Fast-Track: 451 Accelerating Action to End the AIDS Epidemic by 2030 [Internet]. 2015 [cited 2023 Dec 452 22]. Available from: 453 https://www.unaids.org/sites/default/files/media asset/201506 JC2743 Understanding Fas 454 tTrack en.pdf 455 17. Federal Ministry of Health, Nigeria. National Guidelines for HIV and AIDS Treatment and 456 Care in Adolescents and Adults [Internet]. 2010 [cited 2023 Dec 22]. Available from: 457 https://hivpolicywatch.org/duremaps/data/guidelines-458 rename/NigeriaAdultARTguidelines2010.pdf 459 18. National AIDS/STIs Control Programme, Federal Ministry of Health, Nigeria. Integrated 460 National Guidelines for HIV Prevention Treatment and Care [Internet]. 2014 [cited 2023 Dec 22]. Available from: https://www.childrenandaids.org/sites/default/files/2017-461 462 05/Nigeria-Integrated-National-Guildlines-For-HIV-Prevention-treatment-and-care-463 2014.pdf 464 19. National AIDS and STI's Control Programme, Federal Ministry of Health, Nigeria, National 465 Guidelines for HIV Prevention Treatment and Care [Internet]. 2016 [cited 2023 Dec 22]. 466 Available from: https://www.prepwatch.org/wp-467 content/uploads/2017/08/nigeria national guidelines 2016.pdf 468 20. Sangeda RZ, Mosha F, Prosperi M, Aboud S, Vercauteren J, Camacho RJ, et al. Pharmacy 469 refill adherence outperforms self-reported methods in predicting HIV therapy outcome in 470 resource-limited settings. BMC Public Health. 2014 Oct 4;14:1035. 471 21. Chi BH, Yiannoutsos CT, Westfall AO, Newman JE, Zhou J, Cesar C, et al. Universal 472 definition of loss to follow-up in HIV treatment programs: a statistical analysis of 111 473 facilities in Africa, Asia, and Latin America. PLoS Med. 2011 Oct;8(10):e1001111. 474 22. Adeniyi OV, Ajayi AI. Level and determinants of postpartum adherence to antiretroviral 475 therapy in the Eastern Cape, South Africa. PloS One. 2020;15(2):e0229592. 476 23. Haas AD, Msukwa MT, Egger M, Tenthani L, Tweya H, Jahn A, et al. Adherence to 477 Antiretroviral Therapy During and After Pregnancy: Cohort Study on Women Receiving 478 Care in Malawi's Option B+ Program. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016 479 Nov 1;63(9):1227-35. 480 24. Okawa S, Chirwa M, Ishikawa N, Kapyata H, Msiska CY, Syakantu G, et al. Longitudinal 481 adherence to antiretroviral drugs for preventing mother-to-child transmission of HIV in 482 Zambia. BMC Pregnancy Childbirth. 2015 Oct 12;15:258.


- 483 25. Dada AO, Abubakar A, Bashorun A, Nguku P, Oladimeji A. Predictors of adherence to
- 484 option B+ approach for the prevention of mother to child transmission of human
 485 immunodeficiency virus in Abuja, 2017. Pan Afr Med J. 2021;38:54.
- 486
 486
 486
 487
 488
 488
 488
 488
 488
 489
 489
 480
 480
 480
 480
 481
 481
 482
 483
 484
 484
 484
 485
 485
 486
 486
 487
 488
 488
 488
 488
 488
 489
 480
 480
 480
 480
 480
 480
 481
 481
 482
 483
 484
 484
 484
 485
 485
 486
 487
 487
 487
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
- 27. Decker S, Rempis E, Schnack A, Braun V, Rubaihayo J, Busingye P, et al. Prevention of
 mother-to-child transmission of HIV: Postpartum adherence to Option B+ until 18 months
 in Western Uganda. PloS One. 2017;12(6):e0179448.
- 493 28. Gumede-Moyo S, Filteau S, Munthali T, Todd J, Musonda P. Implementation effectiveness
 494 of revised (post-2010) World Health Organization guidelines on prevention of mother-to495 child transmission of HIV using routinely collected data in sub-Saharan Africa: A
 496 systematic literature review. Medicine (Baltimore). 2017 Oct;96(40):e8055.
- 497 29. Meloni ST, Chang C, Chaplin B, Rawizza H, Jolayemi O, Banigbe B, et al. Time-Dependent
 498 Predictors of Loss to Follow-Up in a Large HIV Treatment Cohort in Nigeria. Open Forum
 499 Infect Dis. 2014 Sep;1(2):ofu055.
- 30. Mitiku I, Arefayne M, Mesfin Y, Gizaw M. Factors associated with loss to follow-up among
 women in Option B+ PMTCT programme in northeast Ethiopia: a retrospective cohort
 study. J Int AIDS Soc. 2016;19(1):20662.
- 31. Adhikari EH, Yule CS, Roberts SW, Rogers VL, Sheffield JS, Kelly MA, et al. Factors
 Associated with Postpartum Loss to Follow-Up and Detectable Viremia After Delivery
 Among Pregnant Women Living with HIV. AIDS Patient Care STDs. 2019 Jan;33(1):14–
 20.
- 507 32. Fuente-Soro L, López-Varela E, Augusto O, Bernardo EL, Sacoor C, Nhacolo A, et al. Loss
 508 to follow-up and opportunities for reengagement in HIV care in rural Mozambique: A
 509 prospective cohort study. Medicine (Baltimore). 2020 May;99(20):e20236.
- 33. Zürcher K, Mooser A, Anderegg N, Tymejczyk O, Couvillon MJ, Nash D, et al. Outcomes
 of HIV-positive patients lost to follow-up in African treatment programmes. Trop Med Int
 Health TM IH. 2017 Apr;22(4):375–87.
- 34. Moyo F, Mazanderani AH, Kufa T, Sherman GG. Maternal HIV viral load testing during
 pregnancy and postpartum care in Gauteng Province, South Africa. South Afr Med J SuidAfr Tydskr Vir Geneeskd. 2021 Apr 30;111(5):469–73.
- 35. Ngandu NK, Lombard CJ, Mbira TE, Puren A, Waitt C, Prendergast AJ, et al. HIV viral load
 non-suppression and associated factors among pregnant and postpartum women in rural
 northeastern South Africa: a cross-sectional survey. BMJ Open. 2022 Mar
 10;12(3):e058347.
- 520 36. Federal Ministry of Health, Nigeria. Nigeria HIV/AIDS Indicator and Impact Survey
 521 (NAIIS) 2018: Technical Report [Internet]. Abuja, Nigeria: Federal Ministry of Health;
 522 2019 [cited 2023 Dec 22]. Available from:
- 523 https://www.ciheb.org/media/som/microsites/ciheb/documents/NAIIS-Report-2018.pdf
- 37. Hoffman RM, Warshaw MG, Amico KR, Pilotto J, Masheto G, Achalapong J, et al.
 Predictors of Viremia in Postpartum Women on Antiretroviral Therapy. J Acquir Immune
 Defic Syndr 1999. 2020 Jan 1:83(1):72–80.
- 38. Landes M, van Lettow M, van Oosterhout JJ, Schouten E, Auld A, Kalua T, et al. Early post partum viremia predicts long-term non-suppression of viral load in HIV-positive women on

- ART in Malawi: Implications for the elimination of infant transmission. PloS One.
 2021;16(3):e0248559.
- 39. Geldsetzer P, Yapa HMN, Vaikath M, Ogbuoji O, Fox MP, Essajee SM, et al. A systematic
 review of interventions to improve postpartum retention of women in PMTCT and ART
 care. J Int AIDS Soc. 2016;19(1):20679.
- 40. Sabin LL, Halim N, Hamer DH, Simmons EM, Jonnalagadda S, Larson Williams A, et al.
 Retention in HIV Care Among HIV-Seropositive Pregnant and Postpartum Women in
 Uganda: Results of a Randomized Controlled Trial. AIDS Behav. 2020 Nov;24(11):3164–
 75.
- 41. Abuogi LL, Onono M, Odeny TA, Owuor K, Helova A, Hampanda K, et al. Effects of
 behavioural interventions on postpartum retention and adherence among women with HIV
 on lifelong ART: the results of a cluster randomized trial in Kenya (the MOTIVATE trial).
 J Int AIDS Soc. 2022 Jan;25(1):e25852.
- 42. Matthews LT, Orrell C, Bwana MB, Tsai AC, Psaros C, Asiimwe S, et al. Adherence to HIV
 antiretroviral therapy among pregnant and postpartum women during the Option B+ era:
 12-month cohort study in urban South Africa and rural Uganda. J Int AIDS Soc. 2020
 Aug;23(8):e25586.
- 43. Myer L, Phillips TK, Zerbe A, Brittain K, Lesosky M, Hsiao NY, et al. Integration of
 postpartum healthcare services for HIV-infected women and their infants in South Africa:
 A randomised controlled trial. PLoS Med. 2018 Mar;15(3):e1002547.
- 44. Phillips TK, Mogoba P, Brittain K, Gomba Y, Zerbe A, Myer L, et al. Long-Term Outcomes
 of HIV-Infected Women Receiving Antiretroviral Therapy After Transferring Out of an
 Integrated Maternal and Child Health Service in South Africa. J Acquir Immune Defic
 Syndr 1999. 2020 Mar 1;83(3):202–9.
- 45. Myer L, Odayar J, Malaba TR, Allerton J, Kabanda S, Hu NC, et al. Improved virologic
 outcomes in postpartum women living with HIV referred to differentiated models of care.
 AIDS Lond Engl. 2022 Dec 1;36(15):2203–11.
- 46. Sam-Agudu NA, Ramadhani HO, Isah C, Erekaha S, Fan-Osuala C, Anaba U, et al. The
 Impact of Structured Mentor Mother Programs on Presentation for Early Infant Diagnosis
 Testing in Rural North-Central Nigeria: A Prospective Paired Cohort Study. J Acquir
 Immune Defic Syndr 1999. 2017 Jun 1;75 Suppl 2:S182–9.
- 47. Vitalis D. Factors affecting antiretroviral therapy adherence among HIV-positive pregnant
 and postpartum women: an adapted systematic review. Int J STD AIDS. 2013
 Jun;24(6):427–32.
- 48. Hodgson I, Plummer ML, Konopka SN, Colvin CJ, Jonas E, Albertini J, et al. A systematic
 review of individual and contextual factors affecting ART initiation, adherence, and
 retention for HIV-infected pregnant and postpartum women. PloS One.
 2014;9(11):e111421.
- 567 49. Sakyi KS, Lartey MY, Kennedy CE, Dension JA, Mullany LC, Owusu PG, et al. Barriers to
 568 maternal retention in HIV care in Ghana: key differences during pregnancy and the
 569 postpartum period. BMC Pregnancy Childbirth. 2020 Jul 17;20(1):398.
- 570 50. Oyeledun B, Phillips A, Oronsaye F, Alo OD, Shaffer N, Osibo B, et al. The Effect of a
 571 Continuous Quality Improvement Intervention on Retention-In-Care at 6 Months
- 572 Postpartum in a PMTCT Program in Northern Nigeria: Results of a Cluster Randomized
- 573 Controlled Study. J Acquir Immune Defic Syndr 1999. 2017 Jun 1;75 Suppl 2:S156–64.
- 574



■ <80% MPR ■ 80%-94% MPR ■ ≥95% MPR</p>

Adjusted Odds Ratio and 95% CI

Adjusted Odds Ratio and 95% CI