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Abstract 210 

Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder for 211 

which genetic factors explain up to 75% of the variance. In this study, we performed a genome-212 

wide association meta-analysis (GWAMA) of ADHD symptom measures, with an effective sample 213 

size of 120,092 (71,733 unique individuals from 28 population-based cohorts,  with 288,887 214 

quantitative ADHD symptom measures). Next, we meta-analyzed the results with a genome-wide 215 

association study (GWAS) of ADHD diagnosis. The GWAMA of ADHD symptoms returned no 216 

genome-wide significant variants. However, we estimated strong genetic correlations between our 217 

study of quantitative ADHD symptoms and the earlier study of ADHD diagnosis (𝑟!= 1.00, SE= 218 

0.06). Moderate negative genetic correlations (𝑟! < -0.40) were observed with several cognitive 219 

traits. Genetic correlations between ADHD and aggressive behavior and antisocial behavior were 220 

around 1. This provides further evidence of the wide pleiotropic effects of genetic variants and the 221 

role that genetic variants play in the co-occurrence with (mental) health traits. The GWAMAs of 222 

ADHD symptoms and diagnosis identified 2,039 genome-wide significant variants, representing 223 

39 independent loci, of which 17 were new. Using a novel fine-mapping and functional annotation 224 

method, we identified 22 potential effector genes which implicate several new potential biological 225 

processes and pathways that may play a role in ADHD. Our findings support the notion that clinical 226 

ADHD is at the extreme end of a continuous liability that is indexed by ADHD symptoms. We 227 

show that including ADHD symptom counts in large-scale GWAS can be useful to identify novel 228 

genes implicated in ADHD and related symptoms. 229 

 230 

Keywords: ADHD, GWAS, symptoms, diagnosis, genetics, FLAMES 231 

  232 
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Introduction  233 

Attention-deficit/hyperactivity disorder (ADHD) is, for many individuals, a persistent 234 

neurodevelopmental disorder (Faraone et al., 2006; Kan et al., 2013). ADHD is characterized by 235 

three core symptoms: hyperactivity, impulsivity, and inattention (American Psychiatric 236 

Association, 2013). It affects around 5% of children and adolescents and 2.5% of adults worldwide 237 

(Faraone et al., 2015). ADHD may be associated with serious consequences for affected 238 

individuals, their families, and society at large, with symptoms persisting across multiple settings, 239 

i.e. at home, at school, and elsewhere (Caci et al., 2014, 2015). The disorder has a predominantly 240 

genetic aetiology, involving both common and rare genetic variants (Faraone et al., 2024). The 241 

mean estimated heritability across 37 twin studies of ADHD was 74%  (Faraone & Larsson, 2019; 242 

Kan et al., 2014; Merwood et al., 2013), with some differences in heritability across ages and raters 243 

(Kan et al., 2014; Merwood et al., 2013). 244 

In 2019, a genome-wide association meta-analysis (GWAMA) of clinical ADHD, hereafter 245 

referred to as ADHDDIAG2019, including data from 20,183 cases and 35,191 controls, identified the 246 

first 12 genome-wide significant loci associated with ADHD (Demontis et al., 2019). The study 247 

reported that 22% of the variance in ADHD could be explained by all measured single nucleotide 248 

polymorphisms (SNPs). They also performed meta-analyses with deCode, 23andMe, and EAGLE 249 

(Middeldorp et al., 2016). Four independent loci reached the genome-wide significance threshold 250 

(p< 5x10-8) in all three meta-analyses. Interestingly, most independent significant loci, 15, were 251 

found in the meta-analysis with a quantitative assessment of attention problems in EAGLE, 252 

suggesting that quantitative assessments of ADHD can boost the power to identify implicated 253 

genetic variants. Ten independent significant loci were found in meta-analyses with deCode and 254 

23andMe data. In 2023, Demontis and colleagues presented results from their updated GWAS 255 
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meta-analysis of ADHD (ADHDDIAG), combining newly extended data from iPSYCH, deCode, 256 

and the PGC, almost doubling the number of cases compared with ADHDDIAG2019 (Demontis et al., 257 

2023). The definition of cases was broader, for example by including individuals who used ADHD 258 

prescription medication. The study reported 27 independent significant loci and estimated that 14% 259 

of the variance in ADHD could be attributed to the included SNPs. The broader definition of 260 

ADHD diagnosis resulted in a larger sample and, therefore, more power to detect implicated 261 

genetic variants. However, this broader definition also increased the heterogeneity of the 262 

phenotype, which may explain the decrease in SNP-heritability (Wang et al., 2023). 263 

 There is increasing interest and recognition that ADHD symptom counts in non-clinical 264 

samples can tap into the same genetic construct as clinically diagnosed ADHD, supporting the 265 

notion that ‘clinical ADHD’ is at the extreme end of a continuous measure of ADHD symptoms 266 

(Larsson et al., 2012; Levy et al., 1997). This was initially suggested based on multivariate twin 267 

studies (Derks et al., 2008). Additionally, the genetic correlation (𝑟!) between quantitative ADHD 268 

symptom counts (Middeldorp et al., 2016) and ADHDDIAG2019 (Demontis et al., 2019) was 269 

estimated to be 0.97 (SE= 0.21, p= 2.66 x 10-6), suggesting that combining these measures is a 270 

viable strategy to increase statistical power in ADHD GWASs. This was additionally supported by 271 

the increased number of genome-wide significant loci in the meta-analysis of ADHDDIAG2019 and 272 

EAGLE, as compared to ADHDDIAG2019 alone, and to meta-analyses of ADHDDIAG2019, deCode and 273 

23andMe. 274 

In this study, we combine information from 28 population-based cohorts in a GWAMA of 275 

continuous ADHD symptom scores, leading to a total of 71,733 participants. The measures include 276 

repeated assessments (longitudinal data) by multiple raters (maternal, paternal, teachers, and self-277 

assessments) and instruments across ages (range: 2-18 years), for a total of 288,887 measures. We 278 
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also include retrospective self-report data. We meta-analyze all available data into a cross-279 

rater/cross-age/cross-instrument GWAMA of ADHD symptoms (ADHDsymp), taking into 280 

consideration the dependency between multiple assessments within individuals (Ip et al., 2021). 281 

Using measures from multiple raters and ages may further increase the power of the analyses due 282 

to an increase in the validity of the ADHD symptom measures. Next, we estimate the genetic 283 

correlations (𝑟!) between ADHDSYMP and the meta-analysis of case-control samples (Demontis et 284 

al., 2023), and meta-analyze ADHDSYMP with ADHDDIAG (ADHDoverall). Finally, we performed 285 

fine mapping and gene-based tests based on ADHDSYMP and ADHDoverall, performed several 286 

follow-up enrichment and pathway analyses, and estimated genetic correlations between the 287 

GWAMA and a set of predefined outcomes from cognitive and externalizing behaviour domains. 288 

 289 

 290 

Results 291 

ADHDSYMP GWAMA 292 

We first meta-analyzed the effect of each SNP across all available univariate GWAS of quantitative 293 

ADHD measures. Based on an effective sample size of 120,092, the estimated ℎ"#$%  of ADHDSYMP 294 

was 0.04 (SE= 0.01; Z= 8.12). The mean 𝜒% statistic was 1.09 along with an LDSC-intercept of 295 

1.01 (SE= 0.01), indicating that there was no or very limited inflation in test statistics due to 296 

confounding biases such as population stratification. Rather, the GWAMA most likely captured 297 

the polygenic nature of childhood ADHD symptoms. The GWAMA of ADHD symptoms did not 298 

result in any genome-wide significant SNPs (Figure 1, Supplements Table 11). 299 
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 300 

Figure 1. Manhattan plot: GWAMA of ADHD symptoms. 301 

 302 

Meta-analysis with ADHD diagnosis GWAS 303 

SNP-heritability estimated with genomicSEM was 0.13 (SE= 0.01) for ADHDDIAG. The estimated 304 

genetic correlation between ADHDSYMP and ADHDDIAG was 1.00 (SE= 0.06). The CTI was not 305 

significantly different from zero and were subsequently constrained to zero in the following meta-306 

analysis. 307 

Because the point estimate of the genetic correlation between ADHDSYMP and ADHDDIAG 308 

was not significantly different from 1, we constrained the genetic correlation at unity when pre-309 

adjusting the weights and Z-scores for the meta-analysis of ADHDSYMP and ADHDDIAG. A total of 310 

6,571,852 SNPs were included in the meta-analysis. The SNP-heritability of ADHDoverall was 0.11 311 

(SE= 0.01), with a mean 𝜒% statistic of 1.52. The LDSC-intercept and ratio were 1.02 (SE= 0.01) 312 

and 0.03 (SE= 0.02), respectively, indicating that approximately 3% of the signal might be due to 313 

confounding factors. A Manhattan plot of ADHDoverall is shown in Figure 2. 2,039 SNPs reached 314 

genome-wide significance (p< 5 x 10-8), of which 644 were also reported in ADHDDIAG and 1,395 315 
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were new. The 2,039 SNPs corresponded to 43 independent lead SNPs in 39 independent 316 

significant loci, identified with FUMA. Of these 39 loci, 22 were also reported in ADHDDIAG and 317 

17 were new. See also Figure 2 and Supplements Tables 12 and 13.  318 

 319 

Figure 2. Manhattan plot: GWAMA of ADHD symptoms and ADHD diagnosis. Note: orange dots 320 

reflect lead SNPs. 321 

 322 

 323 

Follow-up analyses 324 

Fine mapping & gene-based tests 325 

Gene mapping in FUMA mapped the 43 lead SNPS in 39 independent genomic risk loci to 204 326 

associated genes (See Supplements Table 14), of which 45 were also reported by Demontis et al 327 

(2023). Second, gene-based tests were run in MAGMA (de Leeuw et al., 2015), identifying 64 328 

associated genes (see Supplements Table 15), of which 17 were previously reported by Demontis 329 

et al. (2023). Third, we ran FLAMES (Schipper et al., 2023), with the aim to get a better 330 

understanding of the genes that are causally involved in ADHD. A total of 22 genes had 331 
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FLAMES scores larger than 0.05, and were interpreted as potential effector genes (see 332 

Supplements Table 16). Fourteen of these effector genes were also tagged by the MAGMA gene-333 

based test. Ten of these potential effector genes were previously reported by Demontis et al. 334 

(2023). Four genes were not reported by Demontis et al. (2023) but have previously been linked 335 

to ADHD, as listed by GWAS Catalog. Eight potential effector genes were not reported by 336 

Demontis et al. (2023) or by any ADHD specific studies listed on GWAS Catalog: EMCN, 337 

STK32C, PCDH17, TCF12, PEAK1, IGF1R, CTNNA2, and ABCA12.  338 

 339 

Enrichment & tissue specific expression 340 

Gene-set analysis in MAGMA revealed no significant enrichment in any MSigDB v2023 341 

gene-sets after correction for multiple testing. MAGMA expression analysis showed significant 342 

enrichment of the GWAMA signal in gene-sets differentially expressed in late infancy. 343 

Additionally, there was significant enrichment in several brain tissue types, as well as in the 344 

pituitary gland (See Supplements Figures 1 and 2). 345 

Next, FUMA GENE2FUNC gene-set enrichment analyses of the 204 potential ADHD risk 346 

genes mapped by FUMA showed significant enrichment in genes identified in GWAS of ADHD, 347 

cognition-related phenotypes, and risk-taking behaviors. The genes were not significantly enriched 348 

in any tissue types, or in any of the Brainspan developmental stages of brain samples. Genes were 349 

enriched in 29 gene sets that code for transcription factor targets. Zero synpase cellular component 350 

terms or biological processes were significantly enriched at 1% FDR (testing terms with at least 351 

three matching input genes in SynGO). For a complete overview of all enrichment results and the 352 

included gene sets, see Supplemental Figures 3-5, and Supplemental Notes.  353 

We repeated the same analyses for the 22 potential effector genes identified by FLAMES. 354 

Again, genes were highly enriched for genes identified in GWAS of cognition-related phenotypes, 355 
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and risk-taking behaviors. The 22 genes were significantly overrepresented in gene sets that are 356 

differentially expressed in the frontal cortex, but not in the “general tissue” type brain, or in any of 357 

the Brainspan developmental stages. Genes were also enriched in 52 gene sets that code for 358 

transcription factor targets, 13 microRNA targets, 4 gene ontology biological processes, 1 359 

canonical pathway, and 8 cell type signatures. Zero synpase cellular component terms or biological 360 

processes were significantly enriched at 1% FDR (testing terms with at least three matching input 361 

genes in SynGO). Nine genes were mapped to SynGO annotations, eight to cellular components 362 

and 9 to biological processes. Genes were enriched in integral components of the postsynaptic 363 

density membrane (q= 1.46 × 10−3), postsynaptic density (q= 1.57 × 10−3), postsynapse (q= 364 

5.67 × 10−3), and synapse (q= 7.22 × 10−3), as well as in postsynaptic modulation of chemical 365 

synaptic transmission (q= 3.28 × 10−5), process in the synapse (q= 3.97 × 10−4), and synapse 366 

organization (q= 1.62 × 10−3). For a complete overview of all enrichment results and the included 367 

gene sets, see Supplemental Figures 6-12, Supplementary Tables 17 and 18, and Supplemental 368 

Notes.  369 

 370 

Genetic correlations 371 

We estimated genetic correlations between ADHDoverall and 49 external phenotypes. Results are 372 

shown in Figure 4 and Supplementary Table 18. Strong positive genetic correlations were observed 373 

between ADHDoverall and childhood aggressive behavior (𝑟!= 1.13, SE= 0.05) and antisocial 374 

behavior (𝑟!= 0.97, SE= 0.06). The correlation of 1.13 with childhood aggressive behavior reflects 375 

a high genetic correlation that is likely greater than 1 due to sampling variation, correlations 376 

estimated by LD score regression in genomicSEM are not bounded between -1 and 1 (Childhood 377 

aggression h2 Z= 9.03). Measures of smoking habits (𝑟!= 0.46-0.6, SE= 0.03) and number of 378 
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children (𝑟!= 0.38, SE= 0.04) also showed moderate correlations, as did ratings of overall health 379 

(𝑟!= -0.59, SE= 0.03), educational attainment (𝑟!= -0.55, SE= 0.02), and childhood IQ (𝑟!= -0.43, 380 

SE= 0.06). In general, ADHDoverall showed weak to moderate genetic correlations with 381 

psychopathologies, including Major Depressive Disorder (𝑟!= 0.57, SE= 0.03) and Autism 382 

Spectrum Disorder (𝑟!= 0.39, SE= 0.04). Weak negative genetic correlations were found between 383 

ADHDoverall and alcohol intake frequency (𝑟!= -0.28, SE= 0.03), but a weak positive correlation 384 

with drinks per week (𝑟!= 0.14, SE= 0.03) and a weak positive correlation with cannabis use (𝑟!= 385 

0.2, SE= 0.03). Marees and colleagues (Marees et al., 2020) looked into similar genetic correlations 386 

for alcohol use, and found evidence to suggest that they are the result of SES influences. 387 

ADHDoverall was weakly negatively genetically correlated with birth weight (𝑟!= -0.1, SE= 0.02), 388 

but showed a weak positive genetic correlation with childhood obesity (𝑟!= 0.21, SE=0.05) and a 389 

moderate positive genetic correlation with adult BMI (𝑟!= 0.3, SE= 0.02). 390 
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 391 

Figure 4. Genetic correlations with external phenotypes. Bars indicate 95% confidence intervals. 392 

 393 

 394 

Discussion 395 

We present a genome-wide association meta-analysis of childhood Attention-Deficit/Hyperactivity 396 

Disorder symptoms (ADHDSYMP). A total of 28 cohorts with measures of ADHD symptom counts 397 
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took part; contributing data from multiple raters and instruments, across a wide range of ages. We 398 

meta-analyzed all continuous measures and combined these results with results from two 399 

GWAMAs of ADHD diagnosis (ADHDDIAG) by Demontis and colleagues (2019, 2023). 400 

We did not identify any genome-wide significant hits for ADHD symptoms specifically. 401 

Genetic correlations with ADHD diagnosis was 𝑟!= 1.00, SE= 0.06. This supports the notion that 402 

clinical ADHD is at the extreme end of a continuous genetic liability that is indexed by ADHD 403 

symptoms (Larsson et al., 2012; Levy et al., 1997). This was previously suggested based on 404 

multivariate twin studies (Derks et al., 2008). The estimated ℎ"#$%  of ADHDSYMP was 0.04 (SE= 405 

0.01), which may be considered low compared to the estimated ℎ"#$%  in Demontis et al., 2019 and 406 

2023: 0.22 and 0.14 respectively. This is probably because we introduced heterogeneous 407 

measurement error and bias in our phenotyping by including symptom measures from different 408 

raters, and at different ages, which could subsequently suppress SNP-heritability. 409 

By meta-analyzing GWASs of ADHD symptoms and ADHD diagnosis, we found 2,039 410 

genome-wide significant variants in 39 independent loci, of which 17 were new. Demontis et al. 411 

found 12 and 27 independent hits in 2019 and 2023, which included data from 23andMe. These 412 

23andMe data were excluded from the current meta-analyses. This shows that, because ADHD 413 

symptom measures have been widely collected, combining ADHD symptom counts and diagnosis 414 

can be effective in identifying implicated genetic variants for ADHD. The estimated ℎ"#$%  of 415 

ADHDoverall was 0.11 (SE= 0.01), compared to 0.13 (SE= 0.01) in ADHDDIAG when excluding 416 

23andMe data. This means that by including ADHDSYMP in the ADHDDIAG results,	ℎ"#$%  slightly 417 

decreased. We believe this is due to heterogeneous measurement error and bias in the ADHDSYMP 418 

phenotyping (Wang et al., 2023). The same can be observed when looking at the differences in 419 

ℎ"#$%  between ADHDDIAG from 2019 (ℎ"#$% =	0.22, including 23andMe), which was strict in its 420 
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definition of ADHD cases, and ADHDDIAG from 2023 (ℎ"#$% =	0.14, including 23andMe), which 421 

was slightly more lenient in its definition of ADHD cases. 422 

MAGMA analyses identified 64 potential ADHD risk genes. These genes were 423 

significantly enriched in genes previously identified in GWASs of cognitive phenotypes and risk-424 

taking behaviors. The total GWAS signal was significantly differentially expressed in several brain 425 

specific tissue types, general brain tissue types and the pituitary gland, as well as in late infancy 426 

Brainspan brain samples. FUMA gene-mapping mapped significant loci to 204 genes. Again, genes 427 

were enriched in gene-sets reported by previous GWASs on cognitive behavior, risk-seeking 428 

behavior, and brain development. FUMA enrichment analyses further revealed 29 transcription 429 

factor targets that may be of interest for ADHD. 430 

To get a better understanding of the causal pathways from SNPs to ADHD, we ran 431 

FLAMES (Schipper et al., 2023) to identify likely effector genes. FLAMES identified 22 potential 432 

effector genes, of which 14 overlapped with the MAGMA genes, 12 were previously reported by 433 

Demontis et al. (2023) and 8 were not previously linked to ADHD or not reported on GWAS 434 

Catalog. The 22 genes were significantly overrepresented in gene-sets differentially expressed in 435 

the frontal cortex, enriched in 4 GO biological processes related to neural and physical 436 

development, 52 transcription factor targets, 13 microRNA targets, 8 different cell type signatures, 437 

4 synapse cellular components, and 3 synaptic biological processes.  In Demontis et al. (2023), the 438 

set of potential ADHD risk genes was significantly enriched among genes upregulated during early 439 

embryonic brain development, this result was not replicated in our study. A common theme is that 440 

implicated genes are enriched in processes that are involved in neural development and functioning. 441 

The results provide several new avenues to investigate, which could prove useful in gaining more 442 

insights into the etiology of ADHD. The results may provide more potentially useful information 443 

for the 22 potential effector genes compared to the 204 genes identified by FUMA positional 444 
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mapping, eQTL mapping, and chromatin interaction mapping. We think this difference results from 445 

the difference in strategies employed by both methods. FUMA maps every gene for which some 446 

functional link is known to exist, whereas FLAMES weighs all these measurements and only 447 

prioritizes genes if they are clearly more likely causal genes than the other genes in the locus. Our 448 

findings suggests that FLAMES can help identify functional pathways that may remain hidden 449 

with other approaches due to a reduction of noise from non-causal genes in the set of prioritized 450 

genes, which decreases the power to detect enrichment in functional gene-sets. 451 

Next, we examined genetic correlations between ADHDoverall and various external 452 

phenotypes. Except for anorexia nervosa, ADHDoverall showed significant genetic correlations with 453 

all examined psychopathological traits. Most striking was the genetic correlation of 1.13 with 454 

childhood aggressive behavior, and 0.97 with antisocial behavior. Previous studies reported 455 

moderate-to-strong phenotypic correlations across sex-, rater-, age-, and instrument-specific 456 

assessment between aggressive behavior and attention problems and hyperactivity (Bartels et al., 457 

2018). We found a negative genetic correlation between ADHD and alchohol intake frequency, 458 

and a positive correlation between ADHD and number of drinks per week. Marees et al. (2020) 459 

studied similar correlations between alcohol consumption and mental health traits, and found 460 

evidence that suggests the different genetic correlations are a result of SES effects. We found a 461 

moderate genetic correlation with smoking behaviors, but a small correlation with cannabis use 462 

and discrepant findings for alcohol consumption. This was surprising, given the phenotypic 463 

associations that have been reported in previous studies (Lee et al., 2011). We found negative 464 

correlations with several cognitive traits, such as (childhood) IQ, verbal-numerical reasoning, and 465 

educational attainment. Similar to a GWAS of childhood aggression (Ip et al., 2021), genetic 466 

correlations with several hormone levels were around zero. Finally, we found a small negative 467 

correlation with birthweight, but a weak positive correlation with childhood obesity, and adult 468 
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BMI. These genetic correlations suggest wide pleiotropic effects of variants involved with ADHD. 469 

This is illustrative of the polygenetic nature of most behavioral, cognitive, and (mental) health 470 

traits. It also indicates genetic factors play a role in the comorbidity of psychopathological 471 

disorders.  472 

Combining data collected using different instruments and by different raters helps to 473 

increase the sample size, and with that the statistical power of our analyses. This is illustrated by 474 

the apparent increase in power to detect genetic variants associated with ADHD in the combination 475 

ADHDSYMP and ADHDDIAG, compared to the combination ADHDDIAG and EAGLE ADHD GWAS 476 

(Demontis et al., 2019; Middeldorp et al., 2016). However, this approach of including different 477 

raters and instruments also has some downsides. Correlations between raters and instruments are 478 

not always large, meaning that we introduce heterogeneous measurement error and bias in our 479 

phenotyping, which could suppress SNP-heritability. More homogeneous measurement may offer 480 

an avenue to higher powered GWAS. In light of increased collaborations between cohorts to 481 

expand sample sizes for GWAS, more efforts to standardize the assessment of traits could help 482 

further increase the power and specificity of GWAS results. Moreover, downstream analyses, for 483 

example using polygenic scores computed with the summary statistics of the current study, will 484 

favor cohorts using the same instruments and raters that dominated the discovery sample, in our 485 

case the Achenbach System of Empirically Based Assessment (Achenbach et al., 2017). 486 

Assessments of ADHD in individuals from non-European ancestry were rare in each of the 487 

included cohorts. Because of the low number of assessments, we were forced to exclude non-488 

European individuals from our analyses. We know that results from European ancestry GWASs 489 

often also significantly predict differences in non-European ethnic groups, but often effect sizes 490 

are diluted towards zero. Regrettably, this means that knowledge generated by these types of 491 

studies risks benefit individuals of European ancestry more than from diverse backgrounds. To 492 
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better understand the etiology of ADHD across individuals and backgrounds, it is important to 493 

continue ongoing efforts to increase the inclusivity of GWAS samples.  494 

In conclusion, the current study adds novel insight into the genetic etiology of ADHD. By 495 

meta-analyzing GWAS results from symptom counts of ADHD in children with a diagnosis of 496 

ADHD, we identified novel genome-wide significant loci and genes. The number of genome-wide 497 

(significant) genetic variants that are implicated in ADHD provides further insight into the 498 

polygenic etiology of ADHD. The 22 potential effector genes that were identified by FLAMES 499 

gives insight in several biological processes that may play a causal role in the etiology of ADHD, 500 

and provides avenues for further research. The genetic correlations with other phenotypes further 501 

indicate the wide pleiotropic effects of genetic variants and the role that genetic variants play in 502 

the co-occurrence with (mental) health traits. 503 

 504 

 505 

Methods 506 

Sample & cohorts 507 

Childhood cohorts that collaborate within the ACTION (Aggression in Children: unraveling gene-508 

environment interplay to inform Treatment and InterventiON strategies) consortium (Bartels et al., 509 

2018; Boomsma, 2015; Ip et al., 2021) and EAGLE consortium (Middeldorp et al., 2019) took part 510 

in the meta-analysis of ADHD symptom counts (ADHDSYMP). Cohorts assessed ADHD Symptoms 511 

in children and adolescents aged 1.5 to 18 years and also included adult retrospective assessments. 512 

Each cohort received a standard operation protocol (see: https://www.action-513 

euproject.eu/content/data-protocols). Cohorts could contribute one or several univariate genome-514 

wide association studies (GWAS). A separate analysis was performed for every unique 515 

https://www.action-euproject.eu/content/data-protocols
https://www.action-euproject.eu/content/data-protocols
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combination of rater, instrument, and age, with a minimum of 450 observations per GWAS (so that 516 

each GWAS included a maximum of one measure for each individual). Extended information on 517 

the cohorts can be found in Supplementary Table 1 and the Supplementary Text. Assessments of 518 

individuals of non-European ancestry were limited, and analyses were restricted to individuals of 519 

European ancestry. In total, 28 cohorts contributed 154 GWASs, resulting in a total of 288,887 520 

observations from 72,483 unique individuals (Supplementary Table 2). 521 

 522 

Measurement of ADHD symptoms 523 

ADHD symptoms in children and adolescents were rated by parents, teachers, and the individuals 524 

themselves. Additionally, retrospective assessments of (pre-) adolescent ADHD symptoms from 525 

self-report or maternal report were included in the GWAMA. To maximize sample size, we 526 

included measurement of ADHD symptoms across multiple instruments. In total, 22 ADHD 527 

symptom assessment instruments were included in the meta-analysis (Supplementary Table 3). The 528 

most commonly employed instruments were the Achenbach System of Empirically Based 529 

Assessment (Achenbach et al., 2017) and the Strengths and Difficulties Questionnaire (Goodman, 530 

2001). 531 

 532 

Genotyping and quality control 533 

Genotyping was performed within each cohort using common genotyping arrays (see 534 

Supplementary Table 4), followed by cohort-specific quality control based on individual- and 535 

variant-based call rate, Hardy-Weinberg equilibrium, excessive heterozygosity rates, and minor 536 

allele frequency (see Supplementary Table 5). Cohorts removed samples with non-European 537 

ancestry. 78.6% of the cohorts imputed their genotypes to 1000 Genomes (1000G) phase 3 version 538 

5, while the remaining cohorts used 1000G phase 1 version 3 as the reference set for the imputation 539 



GWAMA OF ADHD SYMPTOMS AND DIAGNOSIS 

22 
 

(Supplementary Table 6). All genotypes were mapped to build 37 of the Human Genome Reference 540 

Consortium assembly (GRCh37). 541 

 542 

GWA model 543 

Each cohort performed a univariate GWAS where ADHD symptoms were regressed on the SNP 544 

genotype, with age, sex, and first five ancestry-based principal components as fixed effects, and, if 545 

necessary, cohort-specific covariates (Supplementary Table 7). To correct for dependency between 546 

observations within univariate analyses, cohorts with related individuals applied a mixed linear 547 

model (Tucker et al., 2015) or a sandwich correction of the standard errors (Minică et al., 2015). 548 

GWASs were stratified by (1) rater, (2) instrument, and (3) age, so that observations within 549 

a univariate GWAS were independent, with a minimum stratum sample size of 450 observations. 550 

In total, summary statistics for 154 univariate GWAS were uploaded. Descriptive statistics for each 551 

uploaded GWAS are shown in Supplementary Table 8. Each cohort also supplied information on 552 

the degree of sample overlap and phenotypic correlation between their univariate analyses. These 553 

statistics allowed us to account for dependency between observations within cohorts.  554 

 555 

Pre-GWAMA QC 556 

Summary statistics from each GWAS went through quality control (QC) using the EasyQC 557 

software package (Winkler et al., 2014). SNPs with a genotyping rate below 95% were removed. 558 

We applied variable QC filters on MAF and HWE p-value tailored to the sample size in the specific 559 

GWAS. Respective cutoffs of INFO> 0.6 and INFO> 0.7 were applied to SNPs that were imputed 560 

using MACH and IMPUTE (Liu et al., 2015). Reported allele frequencies were compared to the 561 

allele frequency in an imputation-matched reference population and variants with an absolute 562 
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difference in allele frequency larger than 0.2 were removed. Supplementary Table 9 reports the 563 

number of SNPs before and after QC.  564 

 565 

Meta-analysis of ADHD symptoms 566 

The meta-analysis method is equal to the method described by Ip and colleagues (Ip et al., 2021). 567 

Due to sample overlap between the univariate GWASs, covariance between GWAS test statistics 568 

are a function of sample overlap and a truly shared genetic signal (Bulik-Sullivan, Loh, et al., 569 

2015). To correct for sample overlap during the meta-analysis, we applied a modified version of 570 

the multivariate meta-analysis approach developed by Baselmans and colleagues (2019), where we 571 

calculated the expected cross-trait-intercept (Bulik-Sullivan, Loh, et al., 2015) based on the 572 

observed sample overlap and phenotypic covariance, as reported by the cohorts. Finally, because 573 

the sum of the number of observations (Nobs) was an overestimate of the effective sample size 574 

(Neff), we approximated the effective sample size as proposed by Ip and colleagues (2021) (𝑁&'' =575 

(

) !/
#$%&'&

* !
#$()*+(,&

+
). SNPs with MAF< 0.01, Neff< 15,000, or were observed in only one cohort were 576 

removed from further analyses. SNP-heritability (ℎ"#$% ) was estimated by genomic Structural 577 

Equation Modeling in R (Grotzinger et al., 2019).  578 

 579 

Meta-analysis with case-control ADHD GWAS 580 

In the next step, we meta-analyzed our ADHDSYMP GWAMA with a GWAS of ADHD diagnosis 581 

(Demontis et al., 2023). In ADHDDIAG, cases are defined as clinically diagnosed with ADHD or 582 

prescribed medication specific for ADHD. ADHDDIAG included data from the Lundbeck 583 

Foundation Initiative for Integrative Psychiatric Research (iPSYCH), the Psychiatric Genomics 584 
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Consortium (PGC), and deCode. Data were obtained for adults and children, resulting in a total of 585 

38,691 cases and 186,843 controls.  586 

For the meta-analysis, we first adjusted the test statistics and sample sizes for ADHDSYMP 587 

and ADHDDIAG as proposed by (Demontis et al., 2019). The lifetime population prevalence of 588 

ADHD was assumed to be 5% (Faraone et al., 2015). SNP-heritability for ADHDSYMP, and 589 

ADHDDIAG, and  𝑟! and cross-trait intercepts (CTI) between ADHDSYMP and ADHDDIAG were 590 

estimated by genomicSEM in R (Grotzinger et al., 2019). We meta-analyzed the results from 591 

ADHDSYMP and ADHDDIAG based on the approach outlined in Baselmans and colleagues 592 

(Baselmans et al., 2019). We specified the effective sample sizes for ADHDDIAG as suggested by 593 

Ip and colleagues (2021): 𝑁&'' =
(

) !/
#$%&'&

* !
#$()*+(,&

+
. SNP-heritability was estimated using LDSC in 594 

genomicSEM (Grotzinger et al., 2019). We assumed no sample overlap between ADHDSYMP and 595 

ADHDDIAG.  596 

 597 

Follow-up analyses 598 

Fine mapping & gene-based tests 599 

We used FUMA (Watanabe et al., 2017) to identify independent genome-wide significant loci 600 

and associated genes. LD blocks of independent significant SNPs within 250kb were merged into 601 

a single genomic locus. Protein-coding genes were mapped if they were located within a 602 

maximum distance of 10 kb of an independent significant SNP, or if a credible variant was 603 

annotated to the gene based on eQTL data or chromatin interaction data from human brain (see 604 

Supplemental Text for the included datasets). These are the same settings used by Demontis et al. 605 

(Demontis et al., 2023). Gene-based tests were run in MAGMA (de Leeuw et al., 2015). 606 

MAGMA gene-based tests combine P-values from multiple SNPs inside a gene to obtain a test 607 
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statistic for each gene (Zgene), while accounting for incomplete linkage disequilibrium between 608 

SNPs. To this end, a list of 18,296 genes and their start- and end-positions, and pre-formatted 609 

genotypes, based on 1000G phase 3, were obtained from the MAGMA website (see 610 

Supplements). We applied a Bonferroni correction for multiple testing at α= 0.05 / 18,296 = 611 

2.733 x 10-6.  612 

It remains difficult to identify which genes are causally involved in ADHD.  Fine-mapped 613 

Locus Assessment Model of Effector geneS (FLAMES) was recently developed with the goal of 614 

predicting the most likely effector genes from GWAS results. FLAMES is a novel framework that 615 

combines SNP-to-gene evidence and convergence-based evidence, outputting a single score per 616 

gene from fine-mapped GWAS loci. We performed statistical fine-mapping using FINEMAP 617 

version 1.4.1 (Benner et al., 2016), and an LD reference panel of 100,000 unrelated UK biobank 618 

participants of European descent. Given that the GWAMA contains cohorts that do not belong to 619 

the UK biobank we restricted the maximum number of causal variants in a locus modelled by 620 

FINEMAP to 1, to avoid overfitting. We ran FLAMES (version 1.0.0) by inputting pathway naïve 621 

PoPS scores (Weeks et al., 2023) for our GWAMA, the FUMA defined loci and corresponding 622 

fine-mapped credible sets, resulting in a single FLAMES score per gene. Genes with FLAMES 623 

scores above 0.05 were interpreted as potential effector genes, as suggested by the FLAMES 624 

authors. For more information on FLAMES, and the included functional annotations, see Schipper 625 

et al. (2023). Functional annotation and enrichment analysis was done for a set of genes with 626 

FLAMES scores above 0.05. 627 

 628 

Enrichment & pathway analyses 629 

We performed MAGMA gene-set analyses using the full ADHDoverall results. Gene property 630 

analysis was performed to test relationships between tissue specific gene expression profiles (See 631 
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Supplementary Notes for an overview) and ADHD-gene associations. Next, genes mapped by 632 

FUMA, and the set of potential effector genes identified with FLAMES were used in gene-set 633 

enrichment analyses. We ran hypergeometric tests using FUMA genes2func to assess if genes of 634 

interest are overrepresented in any of the pre-defined gene sets (See Supplemental Notes for all 635 

included gene-sets). We used SynGO (Koopmans et al., 2019) v1.2 (“20231201”) to test for 636 

enrichment in genes encoding for proteins involved in synaptic cellular components and biological 637 

pathways. The brain expressed background set was used, containing 18,035 unique genes. 638 

 639 

Genetic correlations 640 

We computed genetic correlations between ADHDoverall and 49 preselected traits, including 641 

cognition and externalizing behaviors, psychopathologies, anthropometric measures, metabolic, 642 

and health outcomes (see Supplementary Table 10). Phenotypes were selected based on established 643 

hypotheses or were at least nominally significantly (P<0.05) genetically correlated with 644 

ADHDDIAG2019 (Demontis et al., 2019). Following Bulik-Sullivan et al. (Bulik-Sullivan, Finucane, 645 

et al., 2015) we restricted genetic correlations to external phenotypes for which the 𝑍-scores of the 646 

LDSC-based ℎ"#$%  are ≥ 4.  647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 
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