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Abstract 

Background: Current risk stratification tools for acute myocardial infarction (AMI) have 

limitations, particularly in predicting mortality. This study utilizes cardiac ultrasound 

radiomics (i.e., ultrasomics) to risk stratify AMI patients when predicting all-cause 

mortality. 

Methods: The study included 197 patients: a) retrospective internal cohort (n=155) of 

non-ST-elevation myocardial infarction (n=63) and ST-elevation myocardial infarction 

(n=92) patients, and b) external cohort from the multicenter Door-To-Unload in ST-

segment–elevation myocardial infarction [DTU-STEMI] Pilot Trial (n=42). 

Echocardiography images of apical 2, 3, and 4-chamber were processed through an 

automated deep-learning pipeline to extract ultrasomic features. Unsupervised machine 

learning (topological data analysis) generated AMI clusters followed by a supervised 

classifier to generate individual predicted probabilities. Validation included assessing the 

incremental value of predicted probabilities over the Global Registry of Acute Coronary 

Events (GRACE) risk score 2.0 to predict 1-year all-cause mortality in the internal cohort 

and infarct size in the external cohort. 

Results: Three phenogroups were identified: Cluster A (high-risk), Cluster B 

(intermediate-risk), and Cluster C (low-risk). Cluster A patients had decreased LV 

ejection fraction (P=0.004) and global longitudinal strain (P=0.027) and increased 

mortality at 1-year (log rank P=0.049). Ultrasomics features alone (C-Index: 0.74 vs. 

0.70, P=0.039) and combined with global longitudinal strain (C-Index: 0.81 vs. 0.70, 

P<0.001) increased prediction of mortality beyond the GRACE 2.0 score. In the DTU-
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STEMI clinical trial, Cluster A was associated with larger infarcts size (>10% LV mass, 

P=0.003), compared to remaining clusters. 

Conclusions: Ultrasomics-based phenogroup clustering, augmented by TDA and 

supervised machine learning, provides a novel approach for AMI risk stratification. 
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Introduction 1 

Globally, acute myocardial infarction (AMI) affects nearly 10% of people over 60 2 

years of age (1). In the United States, the total annual cost of AMI was $85 billion in 3 

2016, with an estimated $40 billion lost due to premature mortality in the preceding 4 

decade (2). Unfortunately, despite the success of intervention and evolving guideline-5 

directed treatment, AMI patients continue to have high morbidity and mortality (3). 6 

Currently, clinicians use validated risk stratification scoring systems, such as the Global 7 

Registry of Acute Coronary Events (GRACE) (4,5) and more recently the GRACE 2.0 8 

score (6), to predict the 6-month and 1-year risk of all-cause mortality following AMI. 9 

While guidelines have recommended using the GRACE score as the most robust model 10 

for all acute coronary syndrome types (7-9), these scores were developed using clinical 11 

trial data long before percutaneous interventions became routine. Moreover, GRACE 12 

uses conventional statistical approaches (i.e., logistic regression) with fixed linear 13 

assumptions on data behavior and limited variables, resulting in modest discrimination 14 

(e.g., C-statistic range for predicting mortality:0.65-0.8) (5,9). 15 

Artificial intelligence (AI) techniques have led to the development of novel 16 

methods that includes subjecting images and other inputs to sophisticated algorithms to 17 

capture complexity of human health and disease at the level of the individual (10). 18 

These methods have achieved remarkable success, especially in disease classification 19 

and risk assessments, in several image-based disciplines, such as dermatology, 20 

gastroenterology, ophthalmology, oncology, and neuroradiology (10-16), including the 21 

development of ‘omics’-based decision support tools (17-21). The application of 22 

radiomics to cardiac ultrasound (i.e., ultrasomics), may aid in risk stratification of 23 
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patients experiencing an AMI by extracting texture-based information from the 24 

myocardium. Moreover, the development of automated tools that integrate ultrasomics 25 

for AMI risk stratification addresses the existing gap in current guidelines which do not 26 

currently integrate cardiac imaging-based information in existing tools like GRACE 2.0 27 

for estimating risk. 28 

In the present study, we used a cluster-then-predict approach for AMI risk 29 

stratification. We subjected cardiac ultrasomics information to topological data analysis 30 

(TDA)—a robust method to create compressed representations of highly dimensional 31 

data to create unique patient phenogroups (22). We illustrate that the ultrasomics 32 

phenogroups can provide independent and incremental information to conventional 33 

tools like GRACE 2.0 for augmenting 1-year mortality prediction in AMI patients. 34 

Moreover, TDA can be effectively combined with machine learning and explainable AI 35 

techniques. Accordingly, we also illustrate the ability to develop robust supervised 36 

machine-learning algorithms on clustered patients, which can be applied to external 37 

data for phenogroup prediction. Since infract size is strongly associated with all-cause 38 

mortality in AMI (23), we used the Door-To-Unload in STEMI (DTU-STEMI) Pilot Trial 39 

(24) as an external, prospective, multicenter clinical trial cohort to illustrate that the high-40 

risk phenogroup had larger infarct size as observed on cardiac magnetic resonance 41 

(CMR) imaging.  42 
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Materials and Methods 43 

Study Population 44 

For the internal validation dataset, we identified 155 AMI patients retrospectively 45 

from electronic medical record of Robert Wood Johnson University Hospital who were 46 

admitted over a 6-month period between January 2023 to July 2023. The Institutional 47 

Review Board (IRB) of Robert Wood Johnson University Hospital gave ethical approval 48 

for this work (#Pro2023001660). 49 

This included 87 patients classified as having a NSTEMI (non-ST-elevation 50 

myocardial infarction) and 121 as having a STEMI (ST-elevation myocardial infarction). 51 

STEMI was classified per the Joint ESC/ACCF/AHA/WHF Task Force (25). Briefly, this 52 

included ECG changes revealing 1) new ST-segment elevation in 2 contiguous leads 53 

with greater than 0.1 mV in all leads, with the exception of V2 or V3, 2) new ST- 54 

segment elevation in leads V2-V3 greater than 0.2 mV (men > 40 years old), 0.25 mV 55 

(men < 40 years old), or 0.15 mV (women), 3) Pre-existing left bundle branch block 56 

were further evaluated using the Sgarbossa's criteria (26,27). Exclusion criteria included 57 

(1) patients discharged to institutionalized care, (2) type 2-5 acute myocardial infarction 58 

(AMI), (3) co‐existing terminal illness such as cancer, (4) alternative diagnosis for 59 

elevated cardiac troponin values (e.g. myocarditis, pericarditis, non-ischemic 60 

cardiomyopathies, moderate-severe valvular heart disease), (5) pregnancy, and (6) 61 

technically insufficient imaging for 2 of the following 3 views: apical 4 chamber (A4C), 62 

apical 3 chamber (A3C), and apical 2 chamber (A2C). Of the 208 patients initially 63 

enrolled, 53 patients were accordingly excluded from analysis, this included patients 64 
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with NSTEMI (n=24) and STEMI (n=29). We assessed the performance of the GRACE 65 

2.0 score (6) with the primary outcome of all-cause mortality at one year. 66 

For the external validation dataset, participants were recruited from a 67 

prospective, multicenter, randomized DTU-STEMI pilot trial (24). We included 42 68 

participants with CMR data in the current study. Briefly, patients were included in the 69 

original randomized pilot trial if they 1) were between 21 and 80 years of age and 2) 70 

presented with 1-6 hours of chest pain with documented ST-segment elevation of ≥2 71 

mm in ≥2 contiguous anterior leads or ≥4 mm total ST-segment deviation sum in the 72 

anterior leads. Patients were excluded if they had prior AMI, coronary artery bypass 73 

grafting surgery, out-of-hospital cardiac arrest requiring cardiopulmonary resuscitation, 74 

cardiogenic shock, inability to undergo Impella CP insertion, fibrinolysis within 72 hours 75 

of presentation, or contraindications to CMR imaging (24). 76 

For the external validation study infarct size on CMR was used as the primary 77 

end point. CMR-quantified infarct size was categorized as large (LGE mass accounting 78 

for >10% of the total LV mass) or small (LGE mass accounts for ≤10% of the total LV 79 

mass) (28,29). The details of the CMR protocol have been previously described (24). 80 

Briefly, patients in the DTU-STEMI trial underwent standard CMR with steady-state free-81 

precession sequence for LV ejection fraction, volumes, and mass analysis on days 3 to 82 

5 and again on day 30 (±7 days). Delayed-enhancement imaging was performed using 83 

a 2-dimensional segmented inversion-recovery sequence, 10 minutes after 84 

administration of routine extracellular gadolinium contrast (0.15 mmol/kg of body 85 

weight). Infarct size was expressed as a percentage of total LV mass. A central core 86 

laboratory (Duke Cardiovascular Magnetic Resonance Center, Durham, NC) qualified 87 
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participating sites, performed quality assessment on the images during the conduct of 88 

the study, and manually performed assessment of CMR parameters on deidentified 89 

images without knowledge or access to treatment assignment or clinical outcomes. For 90 

the external cohort, institutional review boards at each site approved the trial, and 91 

patients provided written, informed consent. The study was approved by the Food and 92 

Drug Administration (NCT03000270). 93 

 94 

Echocardiography Image Acquisition, Preprocessing, and Semantic Segmentation 95 

Echocardiograms from A4C, A3C, and A2C were utilized in the present studies 96 

for both the internal and external validation data analysis. Patients and participants 97 

required at least two of the three views to be present to be included in the current study 98 

(see Materials and Methods, section Study Population). 2D echocardiograms were 99 

preprocessed from video formats to DICOM using Sante DICOM Viewer Pro (SanteSoft, 100 

Nicosia, Cyprus, Greece). DICOM files containing doppler data, dual ultrasound 101 

regions, or other with limited technical views were discarded. A4C, A3C, and A2C multi-102 

beat echocardiogram DICOM files were manually selected. Using echocv (30) (i.e., a 103 

semantic segmentation algorithm that automatically defines regions of the heart in 104 

echocardiography images through convolutional neural networks (CNNs)) were 105 

segmented the region of the left ventricle (LV) in the A4C, A3C, and A2C views. 106 

Compared to the published version of the algorithm, we modified echocv to be 107 

executed using Python 3.2 and leveraged TensorFlow 1.15.0 with GPU support, 108 

alongside CUDA 10.0. The segmented images were also uniformly resized to a fixed 109 

shape of 1024 by 1024 to ensure consistency across various image sources. Otherwise 110 
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the use of algorithm and its validation has previously been published, specifically for 111 

predicting LV remodeling in parasternal long axis echocardiograms (31).Using the 112 

semantic segmentation algorithm, a binary mask representing the region of interest 113 

(ROI) within the A4C, A3C, and A2C views was achieved (Figure S1A). The ROI for 114 

each of the three views was then processed to obtained radiomics/ultrasomics-based 115 

information.  116 

 117 

Texture-based Feature Extraction 118 

Echocardiography ultrasomics were extracted in Python (v3.7.13) using 119 

pyradiomics (v3.0.1) (32), SimpleITK (v2.2.0) (33), pywavelets (v1.3.0), and numpy 120 

(v1.21.5) for both the internal and external validation sets. We have previously 121 

published using this methodology on the LV (31). Briefly, feature extraction was 122 

performed for the 2D ROI using featureextractor() from pyradiomics. Default parameters 123 

for extraction, binwidth, resampled pixel spacing, interpolator, label definition, were 124 

applied. In total, first-order (n=18), shape (n=9), and texture-based (n=73) features were 125 

extracted for each of the echocardiography views (i.e., A4C, A3C, and A2C) (Figure 126 

S1B). 127 

 128 

Topological Data Analysis (TDA) 129 

The online tool TDAView (34) was used for phenogroup cluster of AMI patients in 130 

the internal validation set. TDAView utilizes the Mapper algorithm for TDA. A 1D Mapper 131 

filter was applied using Euclidean distance. Number of intervals was defined as 10, with 132 

5 bins. To reduce the overlap between clusters, a 5% overlap was defined. The number 133 
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of clusters was not fixed. Based on the parameters used in TDAView, three clusters 134 

were generated, labeled as Cluster A (n=62), B (n=43), and C (n=50). 135 

 136 

Supervised Machine Learning Classifier 137 

BigML (https://bigml.com. BigML, Inc. Corvallis, Oregon, USA) was utilized for 138 

supervised machine learning and to develop a classifier for prediction of patients in 139 

Cluster A, B, and C. Weights were applied to Cluster A (weight=1), Cluster B 140 

(weight=1.189), and Cluster C (weight=1.023) to address class imbalance. Through the 141 

OptiML application (i.e., a supervised machine learning algorithm that compares 142 

generated ensembles, deep neural networks, and logistic regression algorithms) 10-fold 143 

cross validation was performed and prediction of Cluster A, B, and C phenogroups was 144 

performed using only ultrasomics features. Once the model was developed, batch 145 

prediction was performed on the external validation set (n=42 participants) to assign 146 

phenogroup information. 147 

 148 

Data Availability 149 

All code is made freely available on our GitHub repository 150 

https://github.com/qahathaway/AMI_Phenogroups. All data is available by reasonable 151 

request. 152 

 153 

Statistics 154 

GraphPad Prism (v10.1.1) and R (v4.1.0) were used for statistical analyses. The 155 

Shapiro-Wilk test assessed normality. In normally distributed data with continuous 156 
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variables, a two-sided Student’s t-test was applied. In non-Gaussian distributed data, 157 

the Mann-Whitney test was used. When assessing more than one group of continuous 158 

variables, a one-way analysis of variance (ANOVA) was applied. A Dunnett’s multiple 159 

comparisons test was used for multiple comparisons in the one-way ANOVA. When 160 

assessing more than one group of categorical variables, a non-parametric Kruskal-161 

Wallis test was applied with multiple comparisons testing. 162 

Receiver operating characteristics (ROC) area under the curve (AUC) was 163 

created using the BigML platform, utilizing 10-fold cross validation. A Kaplan-Meier 164 

curve was generated using the R packages survival (v3.4-0) (35) and survminer 165 

(v0.4.9). Stratification of events, assessed as patients at risk for mortality at one year, 166 

was performed over 50-day increments for patients in Cluster A, Cluster B, and Cluster 167 

C. The P-value was calculated using the log-rank test in R. Using the survival package, 168 

a Cox Proportional Hazard model (CoxPH) for time-to-event analyses of mortality at one 169 

year was assessed. A risk score was generated with the A) GRACE 2.0 score alone, B) 170 

GRACE + Cluster A, C) GRACE + LV global longitudinal strain, and D) using all three 171 

variables through CoxPH regression. A probability score (i.e., ranging from 0 to 1) for 172 

predicting outcomes was generated using the predictRisk function of the riskRegression 173 

(v2022.11.28) package in R. The concordance index (C-statistic) was calculated using 174 

the pec (v2022.05.04) package in R (36).  175 
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Results 176 

Study Overview 177 

The current study utilizes an internal validation group of acute myocardial 178 

infarction (AMI) patients (n=155) presenting with non-ST-elevation myocardial infarction 179 

(NSTEMI) and ST-elevation myocardial infarction (STEMI). Apical 4-chamber (A4C), 180 

apical 3-chamber (A3C), and apical 2-chamber (A2C) views were utilized (Figure 2A). 181 

Using echocardiography-derived ultrasomics, phenogroups were labeled through TDA 182 

and applied to the prediction of clinical outcomes, such as time-to-event mortality 183 

(Figure 2B). A supervised machine learning algorithm was further used to characterize 184 

which radiomics features are important in prediction of the phenogroups and generation 185 

of risk prediction score. We then evaluated the incremental value of the phenogroups 186 

using the internal validation group and explored how assigned phenogroup labels 187 

contributed to predicting CMR findings in the external validation group (Figure 2C). 188 

 189 

Patient Demographics and Functional Parameters – Internal Validation 190 

Demographic features for patients in the internal validation study presenting with 191 

NSTEMI (n=63) and STEMI (n=92) were assessed (Table 1). Patients presenting with 192 

STEMI were more likely to have a history of congestive heart failure (CHF) (20.65% vs. 193 

1.59%, P=0.0004) and higher Global Registry of Acute Coronary Events (GRACE) 194 

Score (120.63 vs. 107.92, P=0.0184), compared to NSTEMI patients, respectively. 195 

Patients presenting with NSTEMI were more likely to have a history of coronary artery 196 

disease (CAD) (52.38% vs. 19.57%, P<0.0001), chonic kindey disease (CKD) (23.81% 197 

vs. 10.87%, P=0.0315), and stroke (17.46% vs. 6.52%, P=0.0324), compared to STEMI 198 
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patients, respectively. When comparing the groups based on type of AMI, there were no 199 

differences in outcomes, including major adverse cardiac events (MACE) at 30 days 200 

(P=0.3803), cardiovascular death at 1 year (P=0.8910), and all-cause mortality at 1 year 201 

(0.9502). 202 

Echocardiographic functional features for patients in the internal validation study 203 

presenting with NSTEMI (n=63) and STEMI (n=92) were assessed (Table 2). Patients 204 

presenting with STEMI were more likely to have a LV ejection fraction (48% vs. 53%, 205 

P=0.0087) and left atrial end-systolic volume index (23 mL/m2 vs. 29 mL/m2, P=0.0024), 206 

compared to NSTEMI patients, respectively. Further the LV wall motion score index (2 207 

vs. 1.7, P=0.0072) and LV global longitudinal strain (-11.86 vs. -14.1, P=0.0015) 208 

indicated greater wall motion abnormalities in STEMI compared to NSTEMI patients, 209 

respectively. 210 

 211 

Phenogroup Clustering through Topological Data Analysis (TDA) 212 

Ultrasomics features were collected from the following echocardiography views: 213 

A4C, A3C, and A2C (Figure 1A-B). To understand if these features have value in 214 

predicting outcomes in patients presenting with AMI, ultrasomics features alone were 215 

evaluated using a TDA clustering algorithm that employed Mapper. Using the online tool 216 

TDAView, three phenogroups were identified: Cluster A (n=62), Cluster B (n=43), and 217 

Cluster C (n=50) (Figure 2). Of these phenogroups, Cluster A and Cluster B are 218 

illustrated to be more homogenous in their connectivity within groups, whereas Cluster 219 

C is illustrated to represent a more heterogenous compilation of patients. 220 
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Assessing the differences between these clusters, Cluster A contains more 221 

patients with a prior history of CHF (22.58% vs. 8%, P=0.0397), compared to Cluster C 222 

(Table 3). Further, the Cluster A phenogroup has a higher risk of all-cause mortality at 1 223 

year (19.35% vs. 4%, P=0.0308), compared to Cluster C. The data in Table 2 highlight 224 

how the Cluster A represents a “high-risk” phenogroup, whereas Cluster B can be seen 225 

as “intermediate-risk” and Cluster C as “low-risk”. When assessing the 226 

echocardiographic functional parameters (Table 4), Cluster A had a reduced LV ejection 227 

fraction (45 vs. 53, P=0.0040) and LV global longitudinal strain (-11.88 vs. 13.87, 228 

P=0.0273) compared to Cluster C, respectively. 229 

 230 

Supervised Machine Learning Classifier for Phenogroups 231 

To establish individual patient-level probabilities to belong to specific 232 

phenogroups, a supervised machine learning classifier was developed using the online 233 

tool BigML with their OptiML application (i.e., mixed supervised model with 10-fold cross 234 

validation) on the internal validation patients. Using only ultrasomics features, the 235 

phenogroup labels were predicted for Cluster A (ROC AUC: 0.95), Cluster B (ROC AUC: 236 

0.95), and Cluster C (ROC AUC: 0.92) (Figure 3A). When looking at the features 237 

contributing to the model, there was a mix of texture-based features and first order 238 

features (Figure 3B). Prediction probabilities were generated for the internal validation 239 

dataset based on the supervised classifier; these probabilities were used in subsequent 240 

analyses for risk prediction. 241 

 242 

Outcome Prediction in the Internal and External Patient Groups 243 
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Using mortality at one year, survival analysis revealed that patients assigned to 244 

Cluster A had a significant increase in mortality compared to Cluster C (log rank, 245 

P=0.0489) (Figure 4A). We further wanted to further understand if the phenogroups, 246 

represented by changes in ultrasomics, had incremental value when predicting 247 

mortality. The concordance index was calculated for our four groups of variables: A) 248 

GRACE 2.0 score alone, B) GRACE + Cluster A, C) GRACE + LV global longitudinal 249 

strain, and D) using all three variables together (Figure 4B). We further illustrate that 250 

the use of ultrasomics alone (Concordance: 0.74 vs. 0.70, P=0.0395), and in 251 

combination with functional echocardiographic markers (Concordance: 0.81 vs. 0.70, 252 

P<0.0001), can increase prediction of all-cause mortality beyond that of the GRACE 2.0 253 

score, respectively. 254 

The developed supervised model was further applied to the external participants 255 

to assign phenogroup labels (i.e., Cluster A, B, and C). The batch prediction of the 256 

external dataset (n=42 presenting with STEMI) labeled participants into Cluster A 257 

(n=11), Cluster B (n=23), and Cluster C (n=8) (Table 5). Patients in Cluster A had a 258 

higher percentage of LV identified as “at risk” (60% vs. 37%, P=0.04) at 5 days post 259 

AMI, compared to Cluster C. Moreover, patients in the Cluster A phenogroup had a 260 

higher proportion of large infarcts (>10% of LV mass) at 30 days following AMI (0.91 vs. 261 

0.25, P=0.007), when compared to Cluster C.  262 
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Discussion 263 

Properties of pathological changes within the myocardial microstructure influence 264 

ultrasound signal intensity distributions (31). Unlike information obtained indirectly (i.e., 265 

clinical risk factors, ECG, and biomarkers), specific analyzable trends in ultrasound 266 

texture information may have added insights into causal pathways that result in disease 267 

and clinical presentation. Integrating myocardial texture analysis (i.e., ultrasomics) with 268 

clinical data can provide a rich opportunity to develop machine learning models to 269 

predict adverse cardiac events following AMI. To this end we provide a proof-of-concept 270 

application of ultrasomics (i.e., cardiac ultrasound radiomics) in risk stratifying AMI 271 

patients. Three AMI phenogroups were identified according to ultrasound texture 272 

features with patients in phenogroup A having the worst prognosis. Phenogroup A 273 

showed incremental and independent information over GRACE 2.0 for predicting 1-year 274 

mortality after AMI. Using a cluster-then-predict framework we utilized an external hold 275 

out dataset for phenogroup prediction in which phenogroup A had large proportion of 276 

patients with moderate or large infarcts.   277 

While classic supervised learning approaches require larger datasets, the 278 

cluster-then-predict methodology has the advantage of reducing bias, such as 279 

overfitting, when risk stratifying patients. Moreover this approach reduces prediction 280 

errors (37) and shows robust performance with echo-related data (38-41). Radiomics, 281 

deep learning features, 2D-echocardiography, demographic/clinical (e.g., age, sex, 282 

race, BSA, BMI, comorbidities, family history, etc.), laboratory, and biomarker data can 283 

further be added to incrementally increase the risk-stratification of these phenogroups. 284 

Our group has previously utilized TDA to create patient similarity networks to identify 285 
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aortic stenosis (42), diastolic dysfunction (43-45), and heart failure (46,47). In aortic 286 

stenosis, by creating patient phenogroups for mild and severe aortic stenosis, the “high-287 

risk” severe aortic stenosis phenogroup was associated with increased risk of balloon 288 

valvuloplasty, and valve replacement (42). Specifically, as shown in this study, the 289 

phenotypic groups from TDA (or unsupervised machine learning, PCA clustering, etc.) 290 

can serve as class labels for developing supervised algorithms. This technique, first 291 

clustering and then predicting using supervised machine-learning models, can result in 292 

stronger associations with clinical outcomes by increasing the number of events (i.e., 293 

phenogroup clusters) and reduce class imbalance. 294 

Current risk stratification tools for AMI, such as the GRACE Score, reduce 295 

mortality rates compared to standard strategies (48,49) but, with the use of current AI 296 

applications, it is possible to characterize more patients at-risk for morbidity and 297 

mortality by combining information from clinical, laboratory, imaging, and other features. 298 

Risk stratification tools can be benchmarked using AUC and C-Index as metrics, with 299 

values ranging from 0.6-0.7 having limited clinical value, whereas those between 0.7- 300 

0.8, 0.8-0.9, and >0.9 considered to have fair, good, and excellent discrimination (50-301 

52), respectively. The GRACE model has shown performances ranging from 0.65-0.8 302 

(C-Index) (9), with our current study reporting a performance of 0.70, utilizing the 303 

GRACE 2.0 score. We also showed how the C-Index improved when using ultrasomics 304 

features (0.74) and in combination with LV functional parameters (0.81). As this is a pilot 305 

study, future work should harness these non-clinical markers (such as ultrasomics and 306 

LV functional information) in larger, multicenter studies to create new risk stratification 307 

tools for the prediction of AMI. 308 
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We note several limitations to the current investigation. 1) The cohort sizes in the 309 

internal and external validations sets are relatively small (n=155 and n=42, 310 

respectively). While this patient groups are small, we highlight how the cluster-then-311 

predict methodology is better adapted to smaller datasets and can help provide a 312 

framework for other investigations where small cohort sizes are present (i.e., rare 313 

diseases, underrepresented minorities, limited resources for data collection, etc.). 2) 314 

The outcome of interest, all-cause mortality at 1 year, was only represented in 20 of 155 315 

patients. Because of the low number of events, we used univariate analysis to screen 316 

for features to provide in the adjusted model while avoid issues with overfitting in the 317 

survival model. Nevertheless, we noted the incremental value of radiomics over 318 

conventional scores like Grace 2.0 and several echocardiographic parameters like 319 

ejection fraction, LV end-systolic volume and global longitudinal strain. Future work with 320 

larger sample size and a greater number of events would allow develop of robust 321 

multivariable models using radiomics, clinical and conventional echocardiographic 322 

features. 3) The use of TDA, and other unsupervised learning approaches, can be 323 

subjective in the number of clusters defined. In the current study, we highlight three 324 

unique phenogroups. While we could have altered the parameters to include more or 325 

less numbers of phenogroups, the main constraint on the Mapper algorithm that we 326 

wanted to maintain was a low percent overlap between groups (i.e., reducing the 327 

similarities of phenogroups and ultimately providing clearer boundaries between those 328 

with “high” and “low” risk). 329 

In summary, we utilize an echocardiography-derived approach to measure 330 

ultrasomics and identify phenogroups among patients presenting with AMI. Through 331 
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TDA, three distinct phenogroups (Clusters A, B, and C) were delineated, with Cluster A 332 

representing a "high-risk" group, Cluster B an "intermediate-risk" group, and Cluster C a 333 

"low-risk" group. These phenogroups demonstrated significant differences in clinical 334 

outcomes, particularly in terms of all-cause mortality at 1 year. Logistic regression and 335 

supervised machine learning further validate the predictive power of these 336 

phenogroups, showing their potential utility in clinical risk stratification. Moreover, 337 

application of the developed model to an external dataset highlighted the robustness of 338 

these phenogroups in predicting cardiac magnetic resonance (CMR) findings such as 339 

infarct size, providing valuable insights for personalized patient management and 340 

prognostication in AMI.  341 
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Tables and Table Legends 516 

Table 1 517 

Internal Validation - Patient Demographics Stratified by Acute Myocardial Infarction (AMI) 

Variable NSTEMI (n=63) STEMI (n=92) P-Value 

Age (years) 68.03 (66.48-69.58) 65.47 (64.04-66.9) 0.28 

Sex/Gender (Male) 40 (63.49%) 70 (76.09%) 0.09 
Race/Ethnicity 
Caucasian 
Asian American 
Hispanic American 
Black/African American 

 
24 (38.1%) 
8 (12.7%) 

14 (22.22%) 
6 (9.52%) 

 
37 (40.22%) 
22 (23.91%) 
14 (15.22%) 

8 (8.7%) 

 
0.79 
0.08 
0.27 
0.86 

BMI (kg/m2) 27.82 (27.09-28.55) 28.43 (27.42-29.44) 0.67 

Systolic Blood Pressure (mmHg) 143 (140-146) 143 (140-147) 0.96 

Diastolic Blood Pressure (mmHg) 74 (72-75) 80 (78-82) 0.05 

Heart Rate (per minute) 84 (81-86) 85 (83-87) 0.66 

Cardiac Arrest (at admission) 0 (0%) 4 (4.35%) 0.09 

Troponin Elevation (at admission) 63 (100%) 89 (96.74%) 0.15 
Smoking History 
Current 
Former 

 
11 (17.46%) 
18 (28.57%) 

 
18 (19.57%) 
22 (24.18%) 

 
0.74 
0.54 

History of CHF 1 (1.59%) 19 (20.65%) *0.0004 

History of COPD 5 (7.94%) 2 (2.17%) 0.09 

History of CAD 33 (52.38%) 18 (19.57%) *<0.0001 

History of CKD 15 (23.81%) 10 (10.87%) *0.03 

History of Diabetes Mellitus 35 (55.56%) 39 (42.39%) 0.11 

History of Hyperlipidemia 38 (60.32%) 51 (55.43%) 0.55 

Prior Myocardial Infarction 12 (19.05%) 13 (14.29%) 0.43 

Prior Percutaneous Intervention 22 (34.92%) 25 (27.17%) 0.31 

Prior Coronary Artery Bypass Graft 7 (11.11%) 7 (7.61%) 0.46 

Prior Stroke 11 (17.46%) 6 (6.52%) *0.03 

GRACE Score 107.92 (105.04-110.8) 120.63 (116.97-124.28) *0.02 

MACE at 30 Days 6 (9.52%) 13 (14.29%) 0.38 

Cardiovascular Death - 1 year 5 (8.06%) 8 (8.7%) 0.89 

All Cause Mortality - 1 year 8 (12.70%) 12 (13.04%) 0.95 

 518 

Table 1: Patient Demographics of the Internal Validation Group Stratified by Acute 519 

Myocardial Infarction (AMI). Patients presenting with non-ST-elevation myocardial 520 

infarction (NSTEMI, n=63) and ST-elevation myocardial infarction (STEMI, n=92). The 521 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.26.24304839doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304839
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shapiro-Wilk test assessed normality. In normally distributed data with continuous 522 

variables, a two-sided Student’s t-test was applied. In non-Gaussian distributed data, 523 

the Mann-Whitney test was used. Data are presented as the percent (%) of total or the 524 

95% confidence interval, where applicable. Data are considered statistically significant if 525 

P≤0.05, denoted by *. BMI = body mass index, CHF = congestive heart failure, COPD = 526 

chronic obstructive pulmonary disease, CAD = coronary artery disease, CKD = chronic 527 

kidney disease, GRACE = Global Registry of Acute Coronary Events, MACE = major 528 

adverse cardiac events.  529 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.26.24304839doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304839
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 530 

Internal Validation - Patient Cardiac Function Stratified by Acute Myocardial Infarction (AMI) 

Variable NSTEMI (n=63) STEMI (n=92) P-Value 

Left Ventricular Internal Diameter - End Diastole (mm) 46 (45-47) 47 (45-49) 0.38 

Left Ventricular Internal Diameter - End Systole (mm) 34 (32-36) 37 (35-39) 0.07 

Left Ventricular Mass Index (g/m²) 87 (81-93) 92 (85-98) 0.35 

Left Ventricular End-diastole Volume (mL) 94 (86-103) 106 (99-113) 0.06 

Left Ventricular End-systole Volume (mL) 47 (40-53) 57 (51-62) *0.03 

Left Ventricular Ejection Fraction (%) 53 (50-56) 48 (45-50) *0.009 

Left Ventricular Wall Motion Score Index 1.7 (1.56-1.83) 2 (1.9-2.11) *0.007 

Left Ventricular Global Longitudinal Strain (%) -14.1 (-15.07- -
13.12) 

-11.86 (-12.64- -
11.08) *0.002 

Left Ventricular Outflow Tract Stroke Volume (mL) 61 (56-66) 55 (51-59) 0.12 

e' Septal 5.90 (5.47-6.33) 6.04 (5.64-6.43) 0.64 

e' Lateral 8.26 (7.51-9.02) 7.79 (7.26-8.32) 0.95 

Mitral Valve E Wave (cm/s) 85 (78-91) 83 (77-89) 0.81 

MV-A  (cm/s) 85 (79-91) 79 (74-84) 0.21 

E/A Ratio 1.06 (0.94-1.18) 1.05 (0.96-1.14) 0.92 

E/e' Septal 15.70 (13.71-17.69) 15.06 (13.66-16.45) 0.64 

E/e' Lateral 11.57 (10.19-12.94) 11.63 (10.44-12.82) 0.95 

Left Atrial End-systolic Volume Index (mL/m2) 29 (26-31) 23 (21-25) *0.002 

 531 

Table 2: Patient Cardiac Function of the Internal Validation Group Stratified by 532 

Acute Myocardial Infarction (AMI). Patients presenting with non-ST-elevation 533 

myocardial infarction (NSTEMI, n=63) and ST-elevation myocardial infarction (STEMI, 534 

n=92). The Shapiro-Wilk test assessed normality. In normally distributed data with 535 

continuous variables, a two-sided Student’s t-test was applied. In non-Gaussian 536 

distributed data, the Mann-Whitney test was used. Data are presented as the percent 537 

(%) of total or the 95% confidence interval, where applicable. Data are considered 538 

statistically significant if P≤0.05, denoted by *.  539 
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Table 3 540 

Internal Validation - Patient Demographics in Predicted Ultrasomics Phenogroups  
Variable Cluster A (High Risk) 

(n=62) 
Cluster B 

(n=43) 
Cluster C (Low Risk) 

(n=50) 
P-

Value 

Age (years) 66.74 (62.98-70.51) 66.88 (62.34-
71.43) 65.9 (62.03-69.77) 0.94 

Sex/Gender (Male) 44 (70.97%) 31 (72.09%) 35 (70%) 0.98 
Race/Ethnicity 
Caucasian 
Asian American 
Hispanic American 
Black/African American 

 
24 (38.71%) 
12 (19.35%) 
9 (14.52%) 
5 (8.065%) 

 
16 (37.21%) 
8 (18.6%) 

9 (20.93%) 
4 (9.302%) 

 
21 (42%) 
10 (20%) 
10 (20%) 
5 (10%) 

 
0.89 
0.99 
0.64 
0.94 

BMI (kg/m2) 29.01 (26.08-31.93) 28.9 (26.91-
30.89) 26.56 (24.68-28.43) 0.28 

Systolic Blood Pressure 
(mmHg) 140 (132-149) 145 (135-155) 145 (136-155) 0.65 

Diastolic Blood Pressure 
(mmHg) 78 (73-84) 77 (71-84) 76 (71-80) 0.72 

Heart Rate (per minute) 86 (81-92) 85 (78-93) 81 (76-87) 0.47 
Cardiac Arrest (at admission) 2 (3.226%) 1 (2.326%) 1 (2%) 0.92 
Troponin Elevation (at 
admission) 61 (98.39%) 43 (100%) 48 (96%) 0.37 

STEMI (at admission) 36 (58.06%) 26 (60.47%) 30 (60%) 0.96 
Smoking History 
Current 
Former 

 
16 (25.81%) 
10 (16.13%) 

 
11 (25.58%) 
6 (13.95%) 

 
13 (26.53%) 

13 (26%) 

 
0.99 
0.27 

History of CHF 14 (22.58%)* 2 (4.651%) 4 (8%) *0.01 
History of COPD 1 (1.613%) 4 (9.302%) 2 (4%) 0.17 
History of CAD 21 (33.87%) 18 (41.86%) 12 (24%) 0.19 
History of CKD 10 (16.13%) 5 (11.63%) 10 (20%) 0.55 
History of Diabetes Mellitus 30 (48.39%) 19 (44.19%) 25 (50%) 0.85 
History of Hyperlipidemia 34 (54.84%) 25 (58.14%) 30 (60%) 0.86 
Prior Myocardial Infarction 8 (12.9%) 10 (23.26%) 7 (14.29%) 0.34 
Prior Percutaneous 
Intervention 5 (8.065%) 5 (11.63%) 4 (8%) 0.67 

Prior Coronary Artery Bypass 
Graft 21 (33.87%) 13 (30.23%) 13 (26%) 0.79 

Prior Stroke 6 (9.677%) 4 (9.302%) 7 (14%) 0.71 

GRACE Score 118.1 (109.1-127.2) 114.5 (104.8-
124.3) 112.8 (103.9-121.8) 0.69 

MACE at 30 Days 7 (11.29%) 5 (11.63%) 7 (14.29%) 0.88 
Cardiovascular Death - 1 year 8 (13.11%) 4 (9.302%) 1 (2%) 0.11 
All Cause Mortality - 1 year 12 (19.35%)* 6 (13.95%) 2 (4%) *0.04 

 541 

Table 3: Patient Demographics of the Internal Validation Group for Predicted 542 

Ultrasomics Phenogroups. Using only the ultrasomics features from the A4C, A3C, 543 
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and A2C echocardiogram views, patients were clustered into phenogroups. Cluster A 544 

“high-risk” (n=62), Cluster B “intermediate-risk” (n=43), and Cluster C “low-risk” (n=50) 545 

using topological data analysis (TDA). A one-way analysis of variance (ANOVA) was 546 

applied for continuous variables and a Dunnett’s multiple comparisons test was used for 547 

multiple comparisons. For categorical data, a non-parametric Kruskal-Wallis test was 548 

applied with multiple comparisons testing. Data are presented as the percent (%) of 549 

total or the 95% confidence interval, where applicable. Data are considered statistically 550 

significant if P≤0.05, denoted by *. BMI = body mass index, CHF = congestive heart 551 

failure, COPD = chronic obstructive pulmonary disease, CAD = coronary artery disease, 552 

CKD = chronic kidney disease, STEMI = ST-elevation myocardial infarction, GRACE = 553 

Global Registry of Acute Coronary Events, MACE = major adverse cardiac events. 554 
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Table 4 555 

Internal Validation - Patient Cardiac Function in Predicted Ultrasomics Phenogroups  
Variable Cluster A (High 

Risk) (n=62) 
Cluster B 

(n=43) 
Cluster C (Low 

Risk) (n=50) 
P-

Value 
Left Ventricular Internal Diameter - End 
Diastole (mm) 48 (46-50) 46 (43-49) 45 (43-47) 0.17 

Left Ventricular Internal Diameter - End 
Systole (mm) 37 (35-40)* 35 (31-38) 33 (31-36) *0.04 

Left Ventricular Mass Index (g/m²) 92 (84-99) 85 (76-93) 91 (81-101) 0.53 
Left Ventricular End-diastole Volume 
(mL) 103 (92-113) 108 (95-120) 95 (86-104) 0.27 

Left Ventricular End-systole Volume 
(mL) 58 (50-66)* 52 (42-62) 46 (40-53) 0.07 

Left Ventricular Ejection Fraction (%) 45 (41-49)* 54 (50-58) 53 (50-56) *0.001 

Left Ventricular Wall Motion Score Index 2.00 (1.83-2.17) 1.80 (1.51-
2.10) 1.78 (1.61-1.96) 0.18 

Left Ventricular Global Longitudinal 
Strain (%) 

-11.88 (-12.99- -
10.78)* 

-13.1 (-14.55- -
11.66) 

-13.87 (-15.03- -
12.72) *0.04 

Left Ventricular Outflow Tract Stroke 
Volume (mL) 53 (48-59)* 57 (49-64) 64 (57-71) *0.04 

e' Septal 5.48 (5.04-5.91)* 6.12 (5.54-
6.69) 6.50 (5.86-7.15) *0.02 

e' Lateral 7.56 (6.85-8.27) 8.54 (7.64-
9.44) 8.03 (7.09-8.97) 0.25 

Mitral Valve E Wave (cm/s) 82 (75-90) 83 (72-93) 87 (78-95) 0.74 
MV-A  (cm/s) 81 (74-89) 79 (69-88) 86 (77-94) 0.52 

E/A Ratio 1.06 (0.928-1.19) 1.05 (0.899-
1.21) 1.06 (0.886-1.22) 0.99 

E/e' Septal 16.51 (14.45-18.58) 14.64 (11.6-
17.67) 14.28 (12.43-16.12) 0.30 

E/e' Lateral 12.10 (10.48-13.72) 10.91 (8.86-
12.96) 11.58 (9.83-13.34) 0.63 

Left Atrial End-systolic Volume 
Index (mL/m2) 26 (24-29) 23 (20-26) 25 (21-29) 0.39 

 556 

Table 4: Patient Cardiac Function of the Internal Validation Group for Predicted 557 

Ultrasomics Phenogroups. Using only the ultrasomics features from the A4C, A3C, 558 

and A2C echocardiogram views, patients were clustered into phenogroups. Cluster A 559 

“high-risk” (n=62), Cluster B “intermediate-risk” (n=43), and Cluster C “low-risk” (n=50) 560 

using topological data analysis (TDA). A one-way analysis of variance (ANOVA) was 561 

applied for continuous variables and a Dunnett’s multiple comparisons test was used for 562 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2024. ; https://doi.org/10.1101/2024.03.26.24304839doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304839
http://creativecommons.org/licenses/by-nc-nd/4.0/


multiple comparisons. For categorical data, a non-parametric Kruskal-Wallis test was 563 

applied with multiple comparisons testing. Data are presented as the percent (%) of 564 

total or the 95% confidence interval, where applicable. Data are considered statistically 565 

significant if P≤0.05, denoted by *.  566 
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Table 5 567 

External Validation - Patient Demographics in Predicted Ultrasomics Phenogroups  

Variable Cluster A (High Risk) 
(n=11) Cluster B (n=23) Cluster C (Low 

Risk) (n=8) 
P-

Value 

Age (years) 56.82 (48.07-65.57) 58.26 (53.72-
62.8) 62.88 (54.99-70.76) 0.48 

Sex/Gender (Male) 9 (81.82%) 18 (78.26%) 5 (62.5%) 0.60 

Race/Ethnicity 
Caucasian 
Asian American 
Hispanic American 
Black/African American 

 
8 (72.73%) 
1 (9.091%) 

0 (0%) 
1 (9.09%) 

 
17 (73.91%) 
3 (13.04%) 
1 (4.545%) 
3 (13.04%) 

 
6 (75%) 
0 (0%) 
0 (0%) 
2 (25%) 

 
0.99 
0.58 
0.66 
0.62 

BMI (kg/m2) 30.08 (25.73-34.42) 31.61 (27.35-
35.88) 25.61 (21.55-29.67) 0.23 

Systolic Blood Pressure (mmHg) 148 (129-167) 158 (143-173) 144 (132-157) 0.44 

Diastolic Blood Pressure (mmHg) 93 (81-104) 91 (84-99) 87 (75-99) 0.71 

Heart Rate (per minute) 85 (77-93) 91 (81-101) 81 (66-96) 0.45 

Left Ventricular Ejection Fraction 
(%) 36 (27-45) 37 (31-43) 44 (37-51) 0.41 

Mitral Valve E Wave (cm/s) 74 (58-91) 77 (69-0.85) 74 (60-89) 0.93 

Mitral Valve A Wave (cm/s) 72 (62-83) 69 (59-78) 74 (64-85) 0.71 

E/A Ratio 1.07 (0.78-1.37) 1.20 (0.98-1.42) 1.02 (0.79-1.24) 0.55 

History of COPD 0 (0%) 0 (0%) 0 (0%) 0.99 

History of CAD 1 (9.091%) 1 (4.348%) 1 (12.5%) 0.73 

History of CKD 0 (0%) 0 (0%) 0 (0%) 0.99 
History of Diabetes Mellitus 3 (27.27%) 4 (17.39%) 0 (0%) 0.30 
History of Hyperlipidemia 7 (63.64%) 9 (39.13%) 4 (50%) 0.42 
Prior Stroke 1 (9.091%) 0 (0%) 0 (0%) 0.25 
MACE - 30 Days 0 (0%) 2 (8.696%) 0 (0%) 0.44 
Cardiovascular Death - 30 Days 0 (0%) 0 (0%) 0 (0%) 0.99 
All Cause Mortality - 30 Days 0 (0%) 0 (0%) 0 (0%) 0.99 
Infarct Size (%) of Area at Risk - 5 
Days 60 (52-68)* 46 (37-56) 37 (18-56) 0.06 

Acute Volume of Infarct Size (mL)  
- 5 Days 43 (32-54) 31 (20-42) 21 (-4.12-46) 0.17 

Acute Infarct Size (%) of LV Mass - 
5 Days 23 (17-29) 17 (11-23) 12 (-0.53-25) 0.24 

Acute Infarct Size >10% of LV 
Mass - 5 Days 9 (82%) 14 (61%) 3 (38%) 0.07 

Acute Volume of Infarct Size (mL)  
- 30 Days 28 (21-36) 23 (14-32) 14 (-3.10-31) 0.25 

Acute Infarct Size (%) of LV Mass - 
30 Days 18 (13-22) 14 (8.73-19) 9.23 (-1.31-20) 0.27 

Acute Infarct Size >10% of LV 
Mass - 30 Days 10 (91%) 11 (48%) 2 (25%) *0.008 
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 568 

Table 5: Patient Demographics of the External Validation Group for Predicted 569 

Ultrasomics Phenogroups. Using the supervised machine learning classifier 570 

developed on the internal validation cohort, class labels were generated for the external 571 

hold out dataset (i.e., the prospective, multicenter, randomized DTU-STEMI pilot trial 572 

dataset) using batch prediction in BigML. Labels were applied based solely on 573 

ultrasomics features from the A4C, A3C, and A2C echocardiogram views. A one-way 574 

analysis of variance (ANOVA) was applied for continuous variables and a Dunnett’s 575 

multiple comparisons test was used for multiple comparisons. For categorical data, a 576 

non-parametric Kruskal-Wallis test was applied with multiple comparisons testing. Data 577 

are considered statistically significant if P≤0.05, denoted by *. BMI = body mass index, 578 

CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, CAD = 579 

coronary artery disease, CKD = chronic kidney disease, MACE = major adverse cardiac 580 

events, LV = left ventricular.  581 
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Figure and Figure Legends 582 

Figure 1: Study Design and Overview. (A) The internal validation patient cohort 583 

included patients with presenting with non-ST-elevation myocardial infarction (NSTEMI, 584 

n=63) and ST-elevation myocardial infarction (STEMI, n=92) who underwent 585 

echocardiography with views of the Apical 2-Chamber (A2C), Apical 3-Chamber (A3C), 586 

and Apical 4-Chamber (A4C). (B) Ultrasomics features were extracted using echocv 587 

and pyradiomics (v3.0.1). TDAView was used to cluster patients into three 588 

phenogroups: Cluster A, Cluster B, and Cluster C. The identified phenogroups were 589 

used to develop individual patient predicted probability of cluster assignment using a 590 

supervised machine learning classifier. (C) The generated probabilities from the 591 

supervised classifier were used to predict mortality and illustrate the incremental value 592 

of ultrasomics features over GRACE 2.0. Ultrasomics features were also extracted from 593 

the external validation group and applied to the supervised machine learning classifier 594 

to produce class labels (i.e., Cluster A, B, and C). The external validation phenogroups 595 

were used to predict findings on cardiac magnetic resonance, including acute infarct 596 

size.   597 
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Figure 2: Topological Data Analysis (TDA) Clustering of Ultrasomics Features. 598 

Using TDAView a 1D Mapper filter was applied using Euclidean distance. Number of 599 

intervals was defined as 10, with 5 bins. To reduce the overlap between clusters, a 5% 600 

overlap was defined. Individual nodes are represented as red circles, with the number 601 

next to the node corresponding to the number of patients included in the node. Cluster A 602 

(n=62), Cluster B (n=43), and Cluster C (n=50).  603 
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Figure 3: Supervised Machine Learning Classifier. (A) Ultrasomics features, as well 604 

as the class label for the topological data analysis (TDA)-defined phenogroups, were 605 

assessed using BigML and OptiML through 10-fold cross validation in the internal 606 

validation data. (B) The top five features contributing to model development for the 607 

supervised machine learning classifier.  608 
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Figure 4: Performance of Phenogroups in Assessing All-Cause Mortality. (A) 609 

Kaplan Meyer curve and stratified risk categories for patients in phenogroups Cluster A, 610 

Cluster B, and Cluster C. (B) Time-to-event Concordance Index (C-Index) for groups A) 611 

GRACE 2.0 score alone, B) GRACE + Cluster A, C) GRACE + left ventricular global 612 

longitudinal strain (GLS), and D) using all three variables through CoxPH regression. 613 

(C) Incremental value of ultrasomics features (i.e., Cluster A) in predicting all-cause 614 

mortality. GRACE = Global Registry of Acute Coronary Events.  615 
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