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ABSTRACT  

Epidemiologic data often violate common modeling assumptions of independence between 

subjects due to study design. Statistical separation is also common, particularly in the study of 

rare binary outcomes. Statistical separation for binary outcomes occurs when regions of the 

covariate space have no variation in the outcome, and separation can negatively impact the 

validity of logistic regression model parameters. When data are correlated, we generally use 

multi-level modeling for parameter estimation, and statistical approached have also been 

developed for handling statistical separation. Approaches for analyzing data with both 

separation and complex correlation, however, are not well-known. Extending prior work, we 

demonstrate a two-stage Bayesian modeling approach to account for both separated and highly 

correlated data through a motivating example examining the effect of social ties on Acute 

Gastrointestinal Illness (AGI) in rural Ecuador. The two-stage approach involves fitting a 

Bayesian hierarchical model to account for correlation using priors derived from parameter 

estimates from a Firth-corrected logistic regression model to account for separation. We 

compare estimates from the two-stage approach to standard regression methods that only 

account for either separation or correlation. Our results demonstrate that correctly accounting 

for separation and correlation when both are present can potentially provide better inference.  
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MAIN TEXT   

 

Diarrhea is an important disease globally, resulting in approximately 1.3 million deaths annually 

(GBD Diarrhoeal Diseases Collaborators, Troeger et al. 2017). Despite significant reductions in 

disease burden in the last decade, diarrheal disease continues to persist in low-resource 

settings, primarily through human contact and contaminated environments, including water, 

food, sanitation, and lack of hygiene (Eisenberg et al. 2012). Aside from vaccination, well known 

measures of diarrheal disease prevention include implementation of safe water, sanitation, and 

hygiene (WASH) practices, which are commonly spread by word of mouth (Eisenberg et al. 

2012). Though social network data is more commonly used to study disease transmission in 

public health, previous studies from northern coastal Ecuador have shown a greater density of 

social ties between individuals may lead to the spread of sanitation practices, both individual 

and collective, thereby reducing the transmission of diarrheal disease (Zelner et al. 2012). This 

phenomenon, however, has yet to be examined over time using longitudinal data.  

 

We collected social network data from a cohort in coastal Ecuador at three cross-sectional time-

points (2007, 2010, and 2013). We asked individuals to name people within their community 

with whom they discuss important matters and collected data on self-reported diarrhea and 

fever at each time-point. Though most individuals listed friends in their network, few individuals 

reported having diarrhea or fever (approximately 10% per time-point), indicating the diarrheal 

disease outcome is a rare event. We collected data across multiple communities and for 

multiple households within each community at multiple time-points (Figure 1). This leads to a 

hierarchical/multi-level data structure (individual responses nested within households and 

households nested within communities) that is longitudinal. This data structure is commonly 

seen in epidemiological research, particularly in the study of infectious diseases. Resulting 

challenges include dealing with repeated measures within an individual, accounting for cluster-

level correlation, and statistical separation of the outcome and predictors, a phenomenon often 

seen for rare binary outcomes and described in detail below. In this paper, we present a 

statistical approach used to analyze the study data that accounts for both complex multi-level 

correlation and separation in serially measured binary outcome data. 

 

In epidemiology, we generally use logistic regression for binary outcomes. However, the 

uniqueness, existence, and consistency of maximum likelihood estimates for the logistic 

regression model depend on the configuration of data in the outcome-covariate space (Albert 



and Anderson 1984; Santner and Duffy 1986). Separation for binary outcomes occurs when 

regions of the covariate space have no variation in outcome (all one or all zero). This condition 

is driven by factors including sample size, the number of covariates, the joint distribution of 

covariates, the strength of outcome-covariate association and whether the response variable is 

unbalanced/rare (Heinze and Schemper 2002). When there is separation in the data, numerical 

algorithms searching for the maximum likelihood estimate and its variance may lead to poor 

results (Day and Kerridge 1967; Albert and Anderson 1984). A finite solution may not be 

reached, since one or more parameters in the model become theoretically infinite when data are 

separated (Webb, Wilson, and Chong 2004). When the likelihood for one or more parameters is 

maximized at very large but not infinite parameter values, the model experiences quasi-

complete separation (Albert and Anderson 1984). In studies of rare outcomes, separation may 

exist even when sample sizes are sufficiently large due to the unbalanced outcome distribution. 

Unbalanced and rare outcomes are particularly common in epidemiological research, leading to 

a potential need to address statistical separation in analyses. 

 

When observations are independent but separation exists, we can obtain parameter estimates 

using Firth-corrected logistic regression. Firth correction is a penalized likelihood method 

originally introduced to eliminate small-sample bias but which can also be used to address 

issues of statistical separation (Firth 1993). Firth correction introduces a penalty term to the 

logistic regression likelihood involving the square root of the information matrix. This penalty is 

negligible when sample size increases. A comprehensive review of how Firth correction works 

in a binary logit model with a single dichotomous covariate can be found in a paper by Heinze 

and Schemper (Heinze and Schemper 2002). Firth correction can also be viewed in a Bayesian 

framework as using Jeffrey’s prior on all regression parameters. Firth correction has proven 

useful for addressing complete or quasi-complete separation in binary response models, 

providing a better approach to separation than omitting problematic covariates (Heinze and 

Schemper 2002; Abrahantes and Aerts 2012).   

 

In addition to issues of separation, epidemiologic data often violate common modeling 

assumptions of independence between subjects due to study design. In our study, the data are 

clustered (individuals nested within households and households nested within communities). 

Moreover, within-subject longitudinal observations are correlated. The general approach for 

analysis of correlated binary data is to use a Generalized Estimating Equation (GEE) or 

Generalized Linear Mixed Model (GLMM) (Figure 2). GLMM is preferable for our data structure 



for ease of handling nested clustering, unequal or small sized clusters, and missing-at-random 

data. GEE does not allow for multiple cluster-specific variance component estimates and, 

currently, accessible software does not handle multiple levels of clustering with computational 

ease. Unlike GLMM, GEE does not require distributional assumptions on the random effects, 

since estimation of the population average model is based on specifying the first two moments 

and not the entire joint distribution of observed data and random effects (Hubbard et al. 2010). 

Due to lack of collapsibility in the logistic link function, the estimated odds ratio (OR) from a GEE 

model is often closer to the null value of 1 than the corresponding marginal OR in a simple 

random intercept GLMM model (Neuhaus, Kalbfleisch, and Hauck 1991).  

 

Although there are standard and widely-used approaches to address situations with either 

separation or a violation of independence, approaches for analyzing data with complex 

correlation and separation are not extensively well-known. Typical choices regarding which 

analytic approach to use are often ad hoc and based on ignoring one of the issues (Figure 2). 

Though a Firth-penalized likelihood could be used for random effects logistic regression, 

extending Firth correction to GLMM is difficult (Gelman 2006; Abrahantes and Aerts 2012).  

Given our interest in learning about the hierarchical structure of the data and the associated 

variance components, we explore existing methodology in the Bayesian paradigm.   

 

Gelman (2006) and Gelman et al. (2008) explore Bayesian methods for fitting hierarchical 

logistic regression models with separation. These methods involve specification of weakly 

informative Cauchy priors for model parameters (Gelman 2006; Gelman et al. 2008).  

Abrahantes and Aerts (2012) proposed an alternative approach to dealing with separated and 

clustered binary data (Abrahantes and Aerts 2012). Their method uses a penalized likelihood 

approach to obtain data-driven priors for the regression coefficients that account for the 

separation. These prior distributions are then used under a Bayesian hierarchical model for 

inference. Abrahantes and Aerts examine one random effect in their hierarchical model and 

focus on defining weakly informed priors for only those covariates with separation issues. With 

separation issues, uninformative priors generally lead to convergence problems, and strong 

informative priors lead to results depending heavily on the mean and variance of the prior 

distribution. Therefore, their recommendation is to elicit and use weakly informative priors 

(Allison et al. 2003).  

 



To better address the needs of our data, which are both correlated and separated, we extend 

the two-step approach in (15) to a multi-level model by replacing the second step with a 

hierarchical Bayes GLM with weakly informative priors on covariates with separation issues. 

Using these methods, we examine how social ties, individually and collectively, affect diarrheal 

disease over time. In this motivating example, we explore longitudinal clustered data, allowing 

for multiple random effects and accounting for separation in all covariates. We additionally 

explore different regression approaches and demonstrate how effect estimates and standard 

errors differ when we do not account for both separation and correlation.  

 

METHODS 

 

Data structure  

 

We collected sociometric data from 20 villages during three cross-sectional waves (2007, 2010, 

2013) in northern, coastal Ecuador to examine the effect of social ties, derived from social 

network data, on Acute Gastrointestinal Illness (AGI). All community members � 13 years of 

age were asked to participate. We surveyed all study participants who provided informed 

consent (approximately 80% each wave). All data collection protocols were approved by 

institutional review boards at the University of Michigan and Universidad de San Francisco de 

Quito. 

 

Our outcome of interest was based on self-reported diarrhea and fever data collected in the 

sociometric survey. Participants were asked if they had a fever in the last week and if they had 

three or more liquid stools in one day in the last week. We combined these two measures to 

assess an individual’s risk of having Acute Gastrointestinal Illness (AGI) to achieve more 

specificity in the context of enteric disease than just diarrhea. Investigators have used different 

terms for gastrointestinal illness, including Intestinal Infectious Disease (Garthright, Archer, and 

Kvenberg 1988; Roderick et al. 1995) and Highly Credible Gastrointestinal Illness (HCGI) 

(Payment et al. 1991). We define AGI as having diarrhea or fever, similar to other studies (Roy, 

Beach, and Scallan 2006; Majowicz et al. 2008). 

 

Our exposure of interest is a set of four covariates that define different aspects of social 

cohesion at the individual-, household-, and community-levels. Often ascertained by collecting 

survey data, social cohesion is a complex concept that is hierarchical by nature; individuals are 



influenced by their social environment in multiple dimensions (Friedkin 2004). Here, we assess 

social cohesion by use of both social network data and self-reported measures.  

 

Social network data was collected by asking survey participants to identify members of their 

village outside their household with whom they discuss important matters, an indicator of an 

individual’s core discussion network (Marsden 1987). From this, we assessed the number of 

social ties an individual has to other individuals in the same community network. We then 

extended this measure to the household level and measured an highest number of ties in an 

individual’s household (called their household degree) and how large the household degree is 

relative to other households within the same village. We refer to this relative degree as the 

household degree deviance. Continuous average community degree was measured by 

averaging the number of social ties across individuals in each community. Other measures of 

social cohesion examined are whether an individual has trust in her/his community and the 

number of organizations an individual belongs to (treated as a continuous measure).  

 

We also examined remoteness, age, and sex as possible confounders. Remoteness is a 

function of time and cost to the nearest township from each village and is an indicator of 

infrastructural development (Eisenberg et al. 2007), which may influence how individuals 

interact with each other. To avoid computational issues due to scale differences between 

covariates, remoteness was normalized by rescaling each community’s remoteness score to be 

between zero and one, with the most remote village having a remoteness of one. Additionally, in 

our longitudinal model, we assumed a linear rate of change by time, coded ordinally as 0,1,2.  

We restricted analyses to individuals that were surveyed at all three time-points. 

 

Analysis 

 

We assessed whether separation exists among covariates in the dataset by examining 

skewness, distributional plots, and defining prevalence estimates of covariates. We determined 

that separation was present (e.g. Figure S1).  

 

We consider four modeling strategies, each of which attempts to address the non-independence 

(GLMM and GEE methods), the separation (Firth-corrected logistic regression), or both (2-stage 

Bayesian GLM). Below, we describe the four analytical methods. 

 



Two-Stage Bayesian GLMM. Due to the binary nature of our outcome, we used the following 

general multi-level hierarchical model structure, where we considered random effects at the 

individual- and household-levels, and subjects who share the same index (i, j, or k) are 

correlated. Including an additional random effect variable for community did not change the 

results of the full model, so we decided not to include it for parsimony and to limit computational 

complexity.  

 

Level 1 regression equation: 
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Level 2 regression equation: 
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Level 3 regression equation: 
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where μ
�
~ N 0,σμ

2) is the random effect associated with repeated measures within individuals, 

δ�~ N 0,σδ
2) is random effect associated with multiple individuals within a household. Here,  � 

indexes individual (� = 1,…,N), # indexes household (# = 1,…,nj), and $ indexes community ($ = 

1,…, nk).  

 

We extended the Abrahantes and Aerts approach by (1) adding multiple random effects and (2) 

using weakly informative, normally distributed priors obtained from a Firth-corrected logistic 

regression without any adjustment for the nested structure. We fit this regression using the 

following model structure: 
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where parameter ) is a 14 x 1 vector. The log-likelihood is penalized with a Firth correction as 

follows, where * +, is the unpenalized log-likelihood and - +, is the corresponding information 

matrix: 
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We then used a Bayesian hierarchical model described previously to obtain inference using 

prior distribution N(+2, 34��, for each fixed effect, where +2 is the maximum likelihood estimate 

from the Firth corrected logistic regression and 34�� is the estimated variance. We assumed a 

noninformative Inv-Gamma(10-3, 10-3) prior for the random effect variances σμ
2 and σδ

2. We also 

examined a less informative “large variance” prior distribution of N(+2, 2·34��,) for the fixed effects 

to allow for extreme values of beta and compared this to the more informative default N(+2, 34��, 

prior. 

 

We fit the Bayesian hierarchical model using Stan, which uses a Hamiltonian Monte Carlo No-

U-Turn Sampler algorithm. This algorithm avoids random walk behavior and sensitivity to 

correlated parameters but is sensitive to step size and desired number of steps (Hoffman and 

Gelman 2011). We ran each model for 5 chains of 10,000 iterations with a thinning of 5, after a 

2,000 iteration burn-in. Convergence was assessed by the Geweke test (Geweke 1992), and we 

reported the 2.5% and 97.5% quantiles of the posterior distribution for the credible intervals.  

 

GLMM, GEE, and Firth-Corrected logistic regression. As a comparison, we analyzed our data 

either ignoring the separation or certain elements of the clustering using statistical models 

routinely available in standard glm or glmm packages. For the GLMM method, we fit the 

Bayesian hierarchical model structure described for the 2-stage modeling using frequentist 

methods. For the GEE method, we fit a model using the logistic regression model mean 

structure used in the Firth corrected regression described earlier and accounting for correlation 



between the repeated measures but ignoring the clustering within households and communities. 

Both methods ignore the issue of covariate separation. We also compare these methods to the 

Firth-corrected logistic regression fit in the 2-stage procedure, which does not account for the 

clustering.  

 

Software 

 

Social network degrees were calculated in R (v. 3.4.2, R Foundation for Statistical Computing, 

Vienna, Austria) using the package igraph. Regression analyses were conducted in R (v. 3.4.2) 

using packages lme4, geepack, logistf, brms and rstan. The codes for analysis are available on 

github (https://github.com/hegdesonia/two-stage-bayes). 

 

RESULTS 

 

There was a total of 944 individuals observed across three-time points in the longitudinal 

dataset (Table 1). We noted that AGI increased 18% over time and was rare, with approximately 

10% prevalence at each time point. Our outcome was unbalanced, and we noted separation 

issues across all covariates. For example, few subjects had trust and experienced AGI (Figure 

S1).  

 

By not accounting for separation, the GLMM model failed to converge due to excessive zeros in 

the parameter space because of the rare outcome (i.e. separation), resulting in larger parameter 

estimates and standard errors (Figure 3). We report the effect estimates computed in R 

software at the maximum likelihood value evaluated in tables and figures though the GLMM 

model did not converge. Using the GLMM model, valid inference could not be made though we 

were accounting for correlation.  

 

Results from the GEE model had smaller confidence intervals than GLMM (Figure 3). Although 

the estimated effect stayed relatively similar to GLMM, the effect of trust in 2007 had a markedly 

smaller confidence interval in the longitudinal model (GEE 1.40, 95% CI: 1.12, 1.78 vs. GLMM 

1.50, 95% CI: 0.96, 2.34) (Table 2). The odds ratio of AGI in 2007 for every one unit increase in 

the average number of social ties in the community was 0.89 (95% CI: 0.67, 1.19). As in the 

GLMM model, community-level network ties were not significantly associated with AGI. The 

GEE model also showed that for every one unit increase in household social ties away from the 



community mean, an individual’s odds ratio of AGI in 2007 is 0.89 (95% CI: 0.79, 1.00). Though 

the mean effects were similar, the GLMM model demonstrated insignificant effects. By changing 

the model type to account for clustering differently, the significance of certain covariates 

changed, and our inference changed. 

 

The regression with the Firth corrected likelihood accounts for covariate separation but not 

correlation between and within individuals, resulting in differences in the fixed effect estimates 

compared to both the GLMM and GEE results. Because we are not accounting for clustering 

and assume independence, we see larger standard errors due to positive intra-cluster 

correlation (i.e. how large the variance of the random effect is). The large difference in fixed 

effect point estimates in the Firth corrected models compared to the GEE and GLMM models 

suggest an impact of accounting for separation (Figure 3). The odds ratio of AGI in 2007 for 

those who trust the community (1.84, 95% CI: 1.23, 2.75) was greater than both the GEE and 

GLMM estimate (Table 2). The odds ratio of AGI in 2007 for every one unit increase in 

household social ties away from the community mean was significantly protective (0.82, 95% CI: 

0.68, 0.98). The effect direction and significance of covariate effects changed by examining 

separation alone and ignoring correlation. Due to these marked changes in the fixed effects and 

our marginal exploration into separation for these data (e.g. Figure S1), we ultimately 

determined that separation needed to be accounted for in addition to correlation. 

 

Comparing this 2-stage approach that accounts for both highly separated and correlated data to 

the other regression methods used, we noted fixed effect estimates and standard errors that 

reflect the separation and correlation found in the data structure (Figure 3). The odds ratio of 

AGI in 2007 given a one unit increase in average number of social ties in the community is 1.15 

(95% credible interval: 0.77, 1.70,) and the odds ratio of AGI in 2007 given a one unit increase 

in household social ties away from the community mean is 0.83 (95% CI: 0.68, 1.00). Compared 

to the estimates for GEE and GLMM, these estimates reflect wider 95% intervals and different 

point estimates. While our inference from the GEE and GLMM models hint that having a higher 

average number of community social ties may be protective against AGI (not significant), the 2-

stage model suggests that having a higher average number of community social ties may be a 

risk while having a greater number of household ties compared to other community members is 

protective. We also found living in a remote community has a markedly stronger protective 

effect in the 2-stage model compared to both GEE and GLMM (Table 2). Having trust in the 

community remained a significant risk for AGI (OR 1.70, 95% CI: 1.16, 2.48) like the GEE and 



Firth corrected model showed in 2007. Gender had limited effects in all models. Importantly, in 

this analysis, we also illustrated there is little difference in standard errors in the Bayesian 

models when we allow for extreme values by scaling the prior variance by 2 (Table 2). We note 

the changes in effect estimates for each covariate over time in Supplementary Figure 2. 

 

DISCUSSION 

 

Correctly identifying a model type to handle both separated and correlated data can result in 

markedly different inference. We demonstrate this by comparing different model types that only 

account for correlation, that only account for separation, and that account for both. By using the 

2-stage Bayesian GLM approach, we were able to illustrate the protective effects of social ties 

at the household-level against Acute Gastrointestinal Illness (AGI) over time.  

 

GLMM and GEE estimation account for correlation, but there is currently no software available 

that runs a GLMM or GEE accounting for separation. As we noted when comparing GEE and a 

Firth corrected logistic regression, the fixed effects did change markedly when either separation 

or correlation was ignored, changing our inference. Since we were interested in examining both 

individual and collective effects of social ties on AGI and how one level influences the other, 

GEE was also limited in terms of interpretation compared to GLMM.  

 

The 2-stage Bayesian approach for analyzing highly separated and correlated data proved to be 

a useful alternative to ignoring correlation and/or separation in analyses. We recommend this 

approach be adopted more widely, especially for rare, clustered binary response data. Though 

ideally we would like to conduct a full Bayesian model with Bayesian sampling, we are limited by 

software. The proposed method is an efficient approach for epidemiologists as it uses existing 

functions and software. Though there is concern about using data twice for both the prior 

distribution and model fitting, both Gelman and Abrahantes demonstrate by simulation that this 

is not an issue (Gelman 2006; Abrahantes and Aerts 2012). Also, the approach taken in this 

paper reduces bias when both separation and clustering are present. Additionally, it attains 

particularly good results for small sample sizes (N < 100) and when there are greater than 100 

clusters compared to methods ignoring separation and/or clustering (Abrahantes and Aerts 

2012).  

 



A limitation of this approach is the use of weakly informed priors without heavier tails that allow 

for more extreme values as suggested by Gelman’s Cauchy prior. Our approach, as previously 

explained, produces smaller posterior standard deviations with smaller tails of the prior densities 

used. It’s also possible that in the context of modeling rare conditions (Greenland 2001), a 

weaker prior distribution (e.g. a Cauchy with mean zero and scale 10) might lead to more 

realistic results (Gelman et al. 2008). We try to control for this by comparing a prior variance of 

different scales to allow for extreme values and find there is not much difference in the credible 

intervals between a scaled variance prior by two and non-scaled in our setting, though this 

might differ for other datasets. However, we did not compare this to credible intervals and point 

estimates obtained from a weaker informative prior as suggested by Gelman, as that method is 

more difficult and time-intensive to implement. Furthermore, our method assumes 

independence of observations to construct the weakly informative priors for all covariates when 

the binary outcome presents separation issues. Additionally, though we standardized 

continuous covariates in our model, we did not standardize the binary variables to be symmetric 

as Gelman previously suggested to handle separation. Our assumption is that using this 2-stage 

approach does not require the standardization of binary covariates, which can be hard to do.  

 

In the motivating example, we assume covariate effects change linearly by time and present 

these results in Supplementary Figure 2. We would likely obtain more intuitive time trend results 

if we did not make this linearity assumption, which might avoid some of the direction switching 

that we note in Supplementary Figure 2. We would expect the main effect differences between 

model types (GEE, GLMM, etc) to be similar.  

 

Overall, this approach proves useful and results in minimal statistical bias, assuming we have 

specified the correct model. As the data is longitudinal and the number of clusters and sample 

size are sufficiently large, this method provides fixed effect estimates that better reflect the data 

separation and narrower credible intervals. Typically, in global health we predict effect 

estimates, like prevalence and incidence, of rare outcomes. However, rare outcomes generally 

result in separated data, and we often ignore separation and only account for correlation 

through the common use of GEE and GLMM models. For infectious diseases, which often have 

low prevalence in study data, accounting for separation is especially important for minimizing 

statistical bias and for making inference. By adapting the Abrahantes and Aerts method 

(Abrahantes and Aerts 2012), we can account for multi-level data structures and provide a good 

solution for handling correlated data and making inference across nested clusters. This 



approach allows us to account for both highly separated and highly correlated data, leading to 

more accurate results and predictions.  

 

 
  



TABLES 

 

Table 1. Descriptive statistics of longitudinal data, 2007-2013. 

 

2007 
N=944 
Households=681 
Communities=20 

2010 
N=944 
Households=681 
Communities=20 

2013 
N=944 
Households=681 
Communities=20 

Variable 
description 

Acute 
gastrointestinal 
illness (AGI)*  

10.1% (94) 10.0% (94) 12.6% (118) 

The proportion (N) 
of individuals with 
AGI; having 
diarrhea or fever. 

Household degree 3.7 (0-22) 3.0 (0-22) 3.5 (0-20) 

The median 
(range) across all 
individuals of the 
maximum number 
of degrees (social 
ties) in their 
households. 

Average 
community 
degree 

2.2 (0.8-3.3) 1.9 (0.5-3.0) 2.4 (1.1-4.1) 

The median 
(range) across all 
communities of 
the average 
number of 
degrees (social 
ties ) within each 
communities. 

Age 41.0 (13.0-86) 44.2 (14.0-91) 47.1 (17.0-94) 

The median 
(range) of an 
individual's age in 
the dataset. 

Sex (Female) 58.7% 58.7% 58.7% 
The proportion of 
women in the 
dataset. 

Remoteness 0.464 (0.06-1.00) 0.464 (0.06-1.00) 0.464 (0.06-1.00) 

The median 
(range) across all 
communities of 
the normalized 
remoteness score 
based on time and 
cost to the nearest 
township. 

Trust (Yes) 52.2% 48.5% 33.8% 

The proportion of 
individuals who 
have trust in their 
community in the 
dataset. 



Number of 
organizations 

1.9 (0-7) 1.6 (0-8) 1.00 (0-7) 

The median 
(range) of the 
number of 
organizations an 
individual belongs 
to. 



Table 2. Effect estimates of Acute Gastrointestinal Illness (AGI) using different regression methods, 2007-2013. Household- and 
individual-level clustering is taken into account for GLMM and Bayes models. Only individual-level clustering is taken into account 
for GEE. Time is modeled as ordinal variable (0,1,2). We report OR and 95% CI. 
 

 
Bayes 

OR (Credible Interval)*** 
GEE 

OR (95% CI) 
GLMM 

OR (95% CI) 
Logistf 

OR (95% CI) 

Variable Default ����� ����� 
������� 
����� 

   

Household degree deviance* 0.83  
(0.68, 1.00) 

0.84  
(0.68, 1.04) 

0.89  
(0.79, 1.00) 

0.89 
(0.70, 1.12) 

0.82  
(0.68, 0.98) 

Average community degree 1.15  
(0.77, 1.70) 

1.06  
(0.68, 1.63) 

0.89  
(0.67, 1.19) 

0.88 
(0.53, 1.45) 

1.22  
(0.78, 1.89) 

Age 1.00  
(0.99, 1.00) 

1.00  
(0.99, 1.00) 

1.00  
(0.99, 1.00) 

1.00  
(0.99, 1.01) 

0.99  
(0.98, 1.00) 

Sex (Male)** 0.98  
(0.77, 1.25) 

0.99  
(0.76, 1.28) 

0.99  
(0.87, 1.12) 

0.93  
(0.71, 1.22) 

0.95  
(0.71, 1.27) 

Remoteness* 0.18  
(0.09, 0.36) 

0.20  
(0.09, 0.44) 

0.27  
(0.17, 0.44) 

0.27  
(0.11, 0.63) 

0.06  
(0.02, 0.17) 

Trust* 1.70  
(1.16, 2.48) 

1.60  
(1.06, 2.39) 

1.40  
(1.12, 1.78) 

1.50  
(0.96, 2.34) 

1.84  
(1.23, 2.75) 

Number of organizations 1.23  
(1.08, 1.39) 

1.20  
(1.05, 1.38) 

1.18  
(1.10, 1.26) 

1.17  
(1.01, 1.36) 

1.33  
(1.14, 1.55) 

Time 3.03  
(1.68, 5.53) 

2.48  
(1.32, 4.76) 

1.68  
(1.14, 2.48) 

1.68  
(0.84, 3.39) 

28.9  
(10.2, 81.9) 

Time X Household degree deviance 1.17  
(1.02, 1.34) 

1.15  
(0.99, 1.34) 

1.12  
(1.02, 1.22) 

1.11  
(0.94, 1.31) 

1.40  
(1.15, 1.71) 

Time X Average community degree 0.70  
(0.52, 0.93) 

0.76  
(0.54, 1.04) 

0.90  
(0.72, 1.11) 

0.91  
(0.63, 1.32) 

0.48  
(0.34, 0.69) 

Time X Remoteness 2.32  
(1.39, 3.90) 

2.14  
(1.23, 3.74) 

1.74  
(1.25, 2.42) 

1.70  
(0.92, 3.15) 

0.87  
(0.37, 2.04) 



Time X Trust 0.63 
(0.47, 0.84) 

0.66 
(0.49, 0.90) 

0.73 
(0.62, 0.87) 

0.70  
(0.50, 0.98) 

0.41  
(0.28, 0.59) 

Time X Number of organizations 0.85 
(0.77, 0.94) 

0.87 
(0.78, 0.97) 

0.89 
(0.83, 0.94) 

0.88  
(0.78, 1.00) 

0.77  
(0.68, 0.87) 

σδ
�  (Standard deviation) 0.21 (0.24) 0.22 (0.25) - 0.199 (0.446) - 

σμ
� (Standard deviation) 0.36 (0.31) 0.32 (0.30)  0.180 (0.425)  

Correlation parameter (Standard error) - - 0.0763  (0.0273) - - 



 

FIGURES 

 

Figure 1. Study data nested structure, 2007-2013. 

 

 

  



Figure 2. Chart of analytical approaches for correlated and separated data.  

 

 

  



Figure 3. Forrest plot of the 2007-2013 main effect estimates (i.e. the covariate effects on AGI in 

2007) using different regression methods. Household-level random effect used for GEE and 

Household- and Individual-level random effects used for GLMM and 2-stage Bayesian models. 

The error bars represent the credible intervals for the Bayesian models and confidence intervals 

for GEE, GLMM, and the Firth-corrected logistic model. 
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