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Abstract

Acute respiratory distress syndrome (ARDS) is a clinically defined syndrome of acute hypoxaemic respiratory failure

secondary to non-cardiogenic pulmonary oedema. It arises from a diverse set of triggers and encompasses marked bio-

logical heterogeneity, complicating efforts to develop effective therapies. An extensive body of recent work (including

transcriptomics, proteomics, and genome-wide association studies) has sought to identify proteins/genes implicated in

ARDS pathogenesis. These diverse studies have not been systematically collated and interpreted.

To solve this, we performed a systematic review and computational integration of existing omics data implicating host

response pathways in ARDS pathogenesis. We identified 40 unbiased studies reporting associations, correlations, and

other links with genes and single nucleotide polymorphisms (SNPs), from 6,856 ARDS patients.

We used meta-analysis by information content (MAIC) to integrate and evaluate these data, ranking over 7,000 genes

and SNPs and weighting cumulative evidence for association. Functional enrichment of strongly-supported genes

revealed cholesterol metabolism, endothelial dysfunction, innate immune activation and neutrophil degranulation as

key processes. We identify 51 hub genes, most of which are potential therapeutic targets. To explore biological

heterogeneity, we conducted a separate analysis of ARDS severity/outcomes, revealing distinct gene associations and

tissue specificity. Our large-scale integration of existing omics data in ARDS enhances understanding of the genomic

landscape by synthesising decades of data from diverse sources. The findings will help researchers refine hypotheses,

select candidate genes for functional validation, and identify potential therapeutic targets and repurposing opportunities.

Our study and the publicly available computational framework represent an open, evolving platform for interpretation

of ARDS genomic data.
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Introduction

The acute respiratory distress syndrome (ARDS) is clinically defined as acute hypoxaemic respiratory failure due to

non-cardiogenic pulmonary oedema1. It occurs following a variety of insults; pulmonary and extra-pulmonary. While

this definition has been useful in identifying patients at risk of serious morbidity and death2, it overlooks the underlying

biology and masks heterogeneity3. Arguably, this has contributed to limited success in developing therapeutics4. In

contrast, a biological definition of ARDS may provide the lever necessary for future drug discovery5.

Functional genomics technologies enable hypothesis-free disease characterisation at unprecedented resolution. The

emergence of coronavirus disease 2019 (COVID-19) has provided an opportunity to test genetic approaches to drug

discovery in a homogeneous subset of ARDS patients. A notable success is the finding that baricitinib, a Janus kinase

inhibitor, reduces mortality in patients hospitalised with COVID-196. A priori support for baricitinib7 was greatly

enhanced following the discovery of a causal link between elevated tyrosine kinase 2 (TYK2) expression and severe

COVID-19 in genome-wide association studies (GWAS)8. The availability of comparable omics data for non-COVID

ARDS is limited.

An unresolved challenge is how large omics data can be effectively exploited9. Specifically, how can we combine

data from heterogeneous sources to derive new insights or recalibrate our understanding in the light of new data? We

have proposed meta-analysis by information content (MAIC) as a data-driven, algorithmic, method for combining

gene lists from diverse sources10. MAIC is agnostic to the quality or methodology of the sources and combines ranked

or un-ranked gene sets by calculating weights for each list and gene, and iteratively updating them to converge on

a ranked meta-list. We have successfully applied MAIC to host-genomics studies of influenza A10 and coronavirus

infection8,11, and shown that it out-performs existing algorithms when combining ranked and un-ranked lists obtained

from heterogeneous sources12.

In this work, we present a living meta-analysis by information content of ARDS host genomics studies. This serves

as an open-source resource for gene prioritisation, functional genomics, and drug target discovery. An interactive

interface can be accessed at https://baillielab.net/maic/ards, alongside a complementary R package.
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Results

Systematic review

We first conducted a systematic review of existing genome-wide studies, which reported associations between genes,

transcripts, or proteins and ARDS susceptibility, severity, survival, or phenotype. Our search yielded 8,937 unique

citations (Fig. S1). We retrieved 74 articles for full-text evaluation and included 40 in our meta-analysis13–52. These

40 studies produced 44 unique gene lists (22 transcriptomic, 13 proteomic, and 9 based on genome-wide association

studies (GWAS); see Table 1). Three studies reported results from multiple methodologies33,38,44, and several used

more than one tissue type18,21,32. Excluding GWAS, 14 gene lists (40%) were derived from lung or airways samples,

and 21 (60%) from blood. We could not retrieve one gene list26. No whole-genome sequencing GWAS were found,

and only 36% (n=8) of transcriptomic lists used next-generation sequencing techniques. The earliest included study

was published in 200418, however, almost half (n=19, 47.5%) were published in the last 5 years.

Most studies aimed to identify genes or proteins associated with ARDS susceptibility (n=27, 67.5%). The remainder

examined associations with survival (n=6, 15%), sub-phenotype (n=4, 10%), disease progression (n=2, 5%), or severity

(n=1, 2.5%). In total, studies included 6,856 patients with ARDS.

Meta-analysis by information content (MAIC)

We analysed all 43 available gene lists using MAIC. Lists were categorised by method (i.e., GWAS, transcriptomics,

and proteomics) and technique (e.g., RNA-seq, mass spectrometry; see Table 1). In total, we ranked 7,085 unique

genes (or SNPs), with a median of 27 genes per gene list (range 1-4,954). The top 100 ranked genes are summarised

in Figure 1. Most genes were found in a single category (n=5,866, 82.8%); only 157 (2.2%) were identified in ≥ 3

categories, with the maximum number of categories supporting a gene being 5 (Figure 1). Similarly, few genes (n=362,

5.1%) were identified by more than one method, with only AKR1B10,HINT1,HSPG2, S100A11, and SLC18A1 present

in transcriptomic, proteomic, and GWAS-based lists.

To prioritise genes for further investigation, we used the unit invariant knee method53 to identify the inflection point

in the MAIC score curve. This prioritised 1,306 genes with scores above this point (Figure 1). These genes were more

likely to be found in ≥ 2 lists or categories and by more than one method (Figure 1).

To assess the influence of individual lists, we calculated the total MAIC score (totMS), reflecting the sum of gene

scores across each list (Fig. S2), and the contributing total MAIC score (ctotMS), measuring the sum of each lists gene

scores which contribute to a gene’s overall MAIC score. To obtain relative values, we divided the totMS/ctotMS for

each list by the total across all included lists. This demonstrated that only 10 lists (from 9 studies) contributed >1% by

either metric (Tab. S1). Notably, the RNA-seq list from Sarma et al.44 accounts for >50%, a function of its length. To

account for this, we normalised totMS/ctotMS by the number of genes per list; along with the proportion of replicated

genes in each list, this provides an alternative perspective, with several proteomic studies ranking highly (Fig. S2).

Comparison with existing ARDS sources and COVID-19

To place our meta-analysis results in context, we evaluated the overlap between the genes prioritised by MAIC and

those from two established resources: BioLitMine54, using anARDSMeSH search, and theARDSDatabase of Genes55

(Fig. S3a and Fig. S3c). A search using BioLitMine, identified 271 ARDS-associated genes, of which 142 (52.4%)

were present in our analysis. Almost half of the overlapping genes (n = 63, 44.4%) ranked within our prioritised set

(Tab. S2).
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Figure 1: Meta-analysis by information content. (a) Heatmap of top 100 ranked genes showingMAIC score, highest
score per category, and number of supporting lists. (b) UpSet plot of ranked genes showing total numbers for each
category combination, MAIC score distribution, and supporting lists. (c) Gene prioritisation using the Unit Invariant
Knee method. Intersection of lines identifies elbow point of best-fit curve. 1,306 genes in the upper left quadrant
were prioritied. (d) Strip plots comparing number of lists , categories, and methods per gene between prioritised and
deprioritised sets.
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After correcting for historical gene symbol aliases, we matched 4 additional genes from the BioLitMine search. A

further 104 genes were supported by just a single publication (Fig. S3b). For each of the remaining 21 genes, we

obtained the 100 most co-expressed genes using ARCHS456 (returning data for 18) and assessed the overlap of these

sets with the results of ARDS MAIC; two-thirds exhibited <50% overlap (Fig. S3b). Of the 239 genes catalogued

in the ARDS Database of Genes, 177 (74.1%) were also found in our study. However, both sources contain gene

associations which lack genome-wide support.

Finally, we compared the overlap between genes ranked by ARDS MAIC and those identified in a previous MAIC

of the host response to coronaviruses11 (Fig. S3d). In total, 2,606 genes (36.8%) were shared, of which 143 were

prioritised by both analyses (Fig. S3e).

Tissue and cell-specific expression

While most gene lists were derived from blood sampling, most genes were identified in airways samples (n=5,847,

82.5%) (Fig. S4a). This was equally the case for the prioritised gene set, however the majority of these genes were

also identified in blood samples (n=818, 62.6%) (Fig. S4b). Among genes uniquely identified in lists obtained from

blood samples (n=1,238), almost three-quarters are known to be expressed in the lung (HPA scRNA-seq data, ≥ 5

normalised transcripts per million (nTPM)), with a quarter being highly-expressed (≥ 100 nTPM) (Fig. S4c).

For prioritised genes found in lists obtained from airways sampling, there was a wide variety of cell-specific expres-

sion (Fig. S4d). However, in the smaller set of prioritised genes identified solely in lists employing blood sampling,

clusters of expression specific to neutrophils, T cells, and monocytes were evident (Fig. S4e). Cell-type specific gene

enrichment analysis suggests innate immune as well as epithelial and endothelial cell types are enriched among genes

identified in airways samples (Fig. S4f). However, enrichment of epithelial and endothelial cells was not evident for

prioritised genes identified from blood sampling alone (Fig. S4g).

Functional enrichment

Having identified a set of prioritised genes, we undertook several functional enrichment analyses. First, we performed

over-representation analysis (ORA). In Reactome, 51 terms were significantly enriched (P < 0.001) (Figure 3). Not

unexpectedly, neutrophil degranulation and several innate immune pathways (e.g., IL-10 signalling, interferon sig-

nalling, MHC II antigen presentation, TLR4 cascade) featured heavily. However, multiple pathways associated with

cholesterol biology and metabolism (e.g., chylomicron assembly/remodelling, GLUT4 translocation, TP53 regulation

of metabolic genes, insulin regulation) were also over-represented. Similarly, lipid and cholesterol metabolism, as well

as hyperlipidaemia, were over-represented in KEGG and WikiPathways (Fig. S5a and Fig. S5b). In an enrichment

analysis using the GWAS Catolog, the prioritised set of genes was associated with asthma (adult onset/time to onset),

monocyte, lymphocyte, and eosinophil counts, aspartate aminotransferase levels, and levels of apolipoprotein A1 (Fig.

S5d).

Next, we used the prioritised set of genes to create a protein-protein interaction (PPI) network. We graph-clustered this

network, identifying 48 clusters with ≥ 5 members. Among the 10 largest clusters, we found programs associated with

the proteaosome, cholesterol metabolism, interferon signalling, IL-6 signalling, and the complement cascade (Fig. S6).

We then sought to use the PPI network to identify hub genes using an ensemble of topological methods. This analysis

suggests 51 genes as being central to the wider network, which fall into clear clusters implicating plausible biological

pathways, including innate immune cytokine signalling, and interferon response (Figure 2). The majority of hub genes

(n=31, 61%) are currently druggable and include targets such as IL-6, IL-17A, IL-18, andMAP3K14.
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Figure 2: Functional enrichment of prioritised genes. (a) Significantly enriched Reactome terms (P < 0.01). Terms
colored by parent class and size proportional to recall. (b) Euler diagram of the overlap of hub genes identified by
five methods. MNC - Maximum Neighbourhood Component, MCC - Maximal Clique Centrality, DMNC - Density
of MNC, EPC - Edge Percolated Component. (c) Protein-protein interaction (PPI) network of hub genes, clustered
using MCL (Markov clustering). Clusters 1 and 2 contain canonical genes associated with innate immune cytokine
signalling and interferon signalling respectively. Cluster 3 contains genes in the PI3K/AKT/mTOR pathway, which is
an imporatant regulator of the cell cycle, and Cluster 4 contains ribosomal genes which are typically over-expressed
during a stress response when protein synthesis increases. Cluster 5 contains genes required for antigen presentation
through theMHCClass II pathway. (d). Heatmap of common hub genes displaying tissue type(s), MAIC score, highest
category score, supporting lists, and presence in the DGIdb druggable genome (indicated in red).9
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Sub-groups

To address the disparate range of study designs included in the overall analysis, we applied MAIC to key subsets of

gene lists, with two different study desings: studies of ARDS versus non-ARDS controls (i.e. presence/absence of

ARDS) (n=28) and studies of ARDS survival and severity (n=7) (Figure 3).

For ARDS vs. non-ARDS controls, there were 15 transcriptomic (54%), 7 GWAS (25%), and 6 proteomic studies

(21%). Together, these studies included 5,713 patients with ARDS.MAIC ranked 2,096 genes (Figure 3). The majority

of these (n=1,222; 58%)were unique to to this sub-group (Figure 3). Most were identified in blood, with a small fraction

found solely in airways samples. The inflection point method prioritised the top-ranked 130 genes (Fig. S7a). In

comparison to the BioLitMine search and the ARDS Database of Genes, 71/271 and 117/239 genes were found among

this sub-group, respectively (Fig. S7b). A single study, a microarray-based transcriptomic list from Juss et. al.30,

contributed the largest total MAIC score in this analysis (Tab. S3). ORA using Reactome, KEGG, and WikiPathways

identified 25 significantly enriched pathways, includingmultiple terms related to cholesterol metabolism and glycolysis

(Figure 4). A consensus of topological models identified 7 hub genes within a PPI network of prioritised genes. These

genes cluster in a single grouping related to cholesterol metabolism (Figure 3).

In the survival/severity analysis, there were 8 gene lists, consisting of 3 transcriptomic lists (37.5%), 3 proteomic lists

(37.5%), and 2 very small GWAS (25%). Together, these studies included 644 patients with ARDS. MAIC ranked

463 genes (Figure 3). Approximately half of these (n=238, 51%) were unique to survival-based lists. In contrast

to the ARDS vs. non-ARDS analysis, most survival genes were found in airways samples. Thirty-three genes were

prioritised (Fig. S7d). In total, 32/271 of the BioLitMine ARDS-associated genes and 23/239 of the ARDS Database

of Genes genes were found among the ARDS MAIC survival set (Fig. S7e). The proteomic and transcriptomic lists

from Bhargava et.al15 and Morrell et. al40 each contributed approximately 30% of the summed ctotMS of all included

gene lists (Tab. S4). IL-10 and IL-18 signalling pathways were both significantly enriched in ORA (Figure 4). Graph-

based (MCL) clustering of the prioritised set of survival genes identified a single large cluster of immune-related genes

including, IL-10, CXCL8, TNFRSF1A, and IL2RA (Figure 4).
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Figure 3: MAIC of sub-groups. (a) Schematic of ARDS MAIC sub-group analyses. (b) Heatmap of top 50 ranked
genes in the ARDS vs. non-ARDS controls set showing MAIC score, highest score per category, and number of
supporting lists. (c) Heatmap of 16 ranked genes in the survival set with multi-list support showing MAIC score,
highest score per category, and number of supporting lists. (d) Euler diagram of gene overlap between the ARDS
vs. non-ARDS controls and survival sets and the remainder of genes. (e) Bar plots of the tissue type in which genes are
identified. (f) Slope plot comparing the ranks of ARDS vs. non-ARDS controls and survival prioritised genes with their
ranks in the full iteration of ARDS MAIC. (g) Euler diagram of the overlap of hub genes identified by five methods.
MNC - Maximum Neighbourhood Component, MCC - Maximal Clique Centrality, DMNC - Density of MNC, EPC -
Edge Percolated Component and a protein-protein interaction (PPI) network of hub genes, clustered using the MCL -
for ARDS vs. non-ARDS controls. 11
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Figure 4: Sub-group functional enrichment. (a) Significantly enriched Reactome, WikiPathways, and KEGG terms
(P < 0.01) for prioritised genes in the ARDS vs. non-ARDS controls sub-group. Terms are coloured by pathway and
size is proportional to recall. (b) A protein-protein interaction network of prioritsed genes in the ARDS vs. non-ARDS
controls cohort and graph-based clusters with ≥ 5 members. (c) Significantly enriched Reactome, WikiPathways, and
KEGG terms (P < 0.01) for prioritised genes in the survival sub-group. Terms are coloured by pathway and size is
proportional to recall. (d) A protein-protein interaction network of prioritsed genes in the survival cohort and graph-
based clusters with ≥ 5 members.
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Discussion

Our large-scale meta-analysis of the genomic landscape of ARDS prioritises 1,306 genes. Using wide inclusion crite-

ria, we capture a diverse range of study designs and methods; the subsequent application of MAIC downgrades noisy,

irrelevant, or low-quality information. These results have three main applications. First, they can be used to better

understand the pathobiology of ARDS, providing a resource to prioritise future in-vitro and in-vivo studies and per-

mitting comparisons between important sub-groups. Second, they prioritise therapeutic targets, serving as a resource

against which novel and repurposed treatments can be screened. Third, they serve as a base for quantifying the novelty

or additive nature of future ARDS studies using high-throughput technologies.

Our review included 40 studies taking a genome/proteome-wide approach with a variety of aims and methods. The

rate at which this form of study is being published is increasing; half of all studies in the last 5 years and a quarter since

2020. Similarly, there were few studies which employed next-generation sequencing (NGS) techniques or equivalent,

and only two single-cell RNA-seq studies. A partial explanation may be the emergence of COVID-19, which is likely

to have consumed the attention of many research teams active in this field. We anticipate that an increasing number of

non-COVID ARDS single-cell and NGS studies will emerge in the coming years. This reinforces the requirement for

methods capable of meta-analysing multi-omic data57. Less obviously. A minority of studies have sampled the lung in

ARDS, with only four examining the bulk transcriptome in the distal airspace. Reliance on information derived from

blood samples may present a skewed picture of the pathobiology of ARDS and may be a missed opportunity to identify

novel targets in the lung58.

A key advantage of theMAIC approach is its ability to integrate diverse data sources and deprioritise irrelevant informa-

tion or noise. Traditional methods of gene list meta-analysis rely on simple vote counting or robust rank aggregation59.

Instead, MAIC applies a data-derived weighting to each gene list, allows the investigator to define granular categorisa-

tion (preventing any one particular method from overwhelming the analysis), and permits the inclusion of both ranked

and unranked lists. For data structures common in biological research (high noise, heterogeneity between studies, large

input lists), MAIC outperformed other methods in a comprehensive simulation12. We have previously used MAIC to

identify anti-viral genes in response to influenza A infection10 and Covid-1911.

Our results reinforce existing associations and reveal some new insights. The functional prominence of innate immunity

and cytokine signalling - in particular neutrophil-related activity - is well described in the ARDS literature60, as is the

high ranking of genes such as CXCL861, IL-1862,MMP963, andMUC164. However, we also identify several genes that

are consistently highly ranked in multiple studies, but have not been extensively discussed in the literature. Histidine

triad nucleotide binding protein 1 (HINT1), ranked 10th in our MAIC analysis, is one of only 5 genes to have support

from GWAS, transcriptomics, and proteomics methods. To our knowledge, no role for HINT1 has previously been

suggested in ARDS65. However,HINT1 has been implicated in T-cell response66, immunoregulation67, and apoptosis65.

There is significant enrichment of cholesterol uptake, efflux, and esterification pathways among prioritised genes68,69.

Stratification by sub-group revealed a tight cluster of genes important in cholesterol metabolism at the hub of those

prioritised in ARDS vs. non-ARDS controls. This is of considerable therapeutic relevance given the potential role of

drugs targeting this pathway in ARDS therapy70,71.

Multiple distinct pathways were identified in the setting of ARDS vs. non-ARDS controls, including type I interferon

signalling72, MHC class II antigen presentation73, cell-cell adhesion74, and natural killer cell cytotoxicity75. In con-

trast, genes prioritised in our severity/outcome analysis are functionally more homogeneous and related to cytokine

signalling, in particular IL-10 and IL-18 signalling. Our approach cannot determine whether this indicates a real dif-
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ference between pathways active in ARDS (from the ARDS vs. non-ARDS analysis) and pathways associated with

severity/survival, or an imbalance of study design or a of lack statistical power to detect some pathways in the sever-

ity/survival studies that have been conducted. We provide an open platform and associated tools to enable deeper

mining of the output, allowing others to re-analyse the data based on alternative sub-group divisions or to integrate

unseen information (https://github.com/baillielab/ARDSMAICr).In future, the addition of data from new technologies,

and in greater scale and precision from existing technologies, is expected to substantially improve this analysis. For

this reason, we consider this report to be the beginning of an ongoing, community-led multi-omic data integration.

Our approach has limitations. The majority of the original studies do not have designs that support causal inference,

so we make no attempt to determine causality. Different methodologies, such as large-scale GWAS/meta-analysis and

genome-wide summary Mendelian randomisation, may support causal inference in future. At present the available

GWAS data is underpowered for this purpose. We purposefully excluded single-gene or candidate genetics studies.

In the case of a gene with extensive evidence from the latter, our methodology may underestimate its association

with ARDS. However, these study designs are subject to other limitations, such as publication and investigator biases

and spurious associations arising from underpowered studies76. The limitations of the available data prevented us

from accounting for direction of expression or effect. For a given gene, if the direction of expression differs between

studies, we may therefore overestimate the strength of evidence associated with that gene. This also limits the scope

of functional enrichment analyses which can be performed. Finally, the paucity of available data, and in particular the

limited number of studies reporting data from ARDS subtypes or single-cell transcriptomics (or proteomics) studies, is

an unavoidable limitation. It is likely that many pathological perturbations are highly cell-type and -state specific, and

specific to distinct underlying disease process, which may not be apparent in bulk analyses of heterogeneous tissues

identified using syndromic definitions77.

Our study provides a first step in systematically integrating decades of work in ARDS. Our results implicate potential

therapeutic targets including interferon signalling and cholesterol metabolism dysregulation. Enrichment patterns and

sub-group differences also give clues to genomic drivers of susceptibility, outcomes, and mortality. We show that

combining existing data reveals new insights that were not observed in the original studies, and provide a framework

for a living summary of the genomic landscape of ARDS.
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Methods

The systematic review andmeta-analysis protocol was registered with the International Prospective Register of System-

atic Reviews (PROSPERO; CRD42022306270). The review is reported in compliance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines78.

Search strategy and selection criteria

A detailed description of our search strategy and eligibility criteria is provided in the Supplementary Methods. Briefly,

we searched MEDLINE, Embase, bioRxiv, medRxiv, the ARDS Database of Genes55, and the NCBI Gene Expression

Omnibus from inception to April 1st, 2023 without language restrictions. We also performed single-level backwards

and forwards citation searches using SpiderCite79 and hand-searched recent review articles80–83.

We included human genome-wide studies reporting associations between genes, transcripts, or proteins and ARDS

susceptibility, severity, survival, or phenotype, accepting any contemporaneous ARDS definition. We excluded pae-

diatric studies (age < 18 years), animal studies, in-vitro human ARDS models, candidate in-vivo or in-vitro studies (<

50 genes/proteins), candidate gene associations, and studies with < 5 patients per arm (except scRNA-seq).

Outcomes

We retrieved ranked lists of genes associated with the ARDS host response, preferring measures of significance and

adjusted P values over raw P values when multiple ranking measures were used. We obtained both summary lists (all

implicated genes) and author-defined subgroup lists. To combine subgroup lists into summary lists, we took the mini-

mum P value or maximum effect size. We excluded genes below the author-defined threshold for significance/effect

magnitude. If unavailable, we excluded genes with P > 0.05, z-score < 1.96, or log fold change < 1.5.

Study selection and data extraction

Article titles and abstracts from our search were stored in Zotero v6.0-beta (Corporation for Digital Scholarship, United

States). Titles were initially screened by one author using Screenatron79. Two authors then independently screened

abstracts against eligibility criteria, with a third resolving inconsistencies. Full texts and supplements of eligible studies

were retrieved and inclusion adjudicated by consensus.

Data were extracted by one author and cross-checked by a second. Gene, transcript, or protein identifiers were mapped

to HGNC symbols or Ensembl/RefSeq equivalents if no HGNC symbol was available. Unannotated SNPs were

searched in NCBI dbSNP. miRBase (University of Manchester, United Kingdom) provided miRNA symbols. For

microarray probes without symbols, we used the DAVID Gene Accession Conversion tool (Laboratory of Human

Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, United States) to map

them to HGNC symbols. We extracted information relating to study design, methodology, tissue/cell type, demo-

graphics, ARDS aetiology, risk factors, severity, and outcomes.

Meta-analysis by information content (MAIC)

The MAIC algorithm has been described in detail8,10,11,84. Full documentation and the source code are available at

https://github.com/baillielab/maic. Briefly, MAIC combines ranked and unranked lists of related named entities, such

as genes, from heterogeneous experimental categories, without prior regard to the quality of each source. The algorithm

makes four key assumptions; (1) genes associated with ARDS exist as true positives, (2) a gene is more likely to be a

true positive if it is found in more than one source, (3) the probability of being a true positive is enhanced if the gene
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appears in a list that contains a higher proportion of replicated genes, and (4) the probability is further enhanced if it

is found in more than one category of experiment. Based on these assumptions, MAIC compares lists with each other,

forming a weighting for each source based on its information content, which is then used to calculate a score for each

gene. The output is a ranked list summarizing the total information supporting each gene’s association with ARDS.

We have shown MAIC outperforms available algorithms, especially with ranked and unranked heterogeneous data84.

As our primary analysis, we performed MAIC on all summary gene lists, regardless of study focus. Lists were as-

signed categories based on their methodology and experimental technique: genome-wide association study (GWAS)

- genotyping, GWAS - whole exome sequencing, transcriptomics - microarray, transcriptomics - RNA-sequencing

(RNA-seq), transcriptomics - single cell RNA-seq (scRNA-seq), proteomics - mass spectometry, and proteomics -

other. For secondary analyses, we performed MAIC on subsets of lists based on study focus (i.e., susceptibility to

ARDS or survival/severity).

In secondary analyses, we repeated this pipeline for gene lists arising from studies in which the focus was ARDS

vs. non-ARDS controls or ARDS survival/severity.

For each MAIC iteration, we prioritised genes with sufficient evidential support for further study (i.e., the gene set

before which information content diminished such that there was little/no corroboration for the remainder’s ARDS

association). We used the unit invariant knee method53,85 to identify the elbow point in the best-fit curve of MAIC

scores. Genes with values above this point were prioritized for downstream analyses.

ARDS literature and SARS-CoV-2 associations

We used BioLitMine54 to query the NCBI Gene database for genes associated with the Medical Subject Heading

(MeSH) term “Respiratory Distress Syndrome, Acute”, generating a list of genes and publications. We descriptively

compared the overlap between this list and the MAIC-ranked gene list. Similar comparisons were made between the

ARDS MAIC results and the gene set in the ARDS Database of Genes55 and a prior MAIC of SARS-CoV-2 host

genomics11.

Tissue expression and enrichment

Transcript and protein expression data for genes included in ARDS MAIC were retrieved from the Human Protein

Atlas (HPA, version 21.0)86. We investigated mRNA expression in a consensus scRNA-seq dataset of 81 cells from

31 sources (https://www.proteinatlas.org/about/assays+annotation#singlecell_rna) and in the HPA RNA-seq

blood dataset87, containing expression levels in 18 immune cell types and total peripheral blood mononuclear cells. To

investigate protein expression, we retrieved tissue-specific expression scores from the HPA88. We conducted cell-type

specific enrichment analysis using WebCSEA89 and extracted the top 20 general cell types for each query.

Functional enrichment

We performed functional enrichment of genes against the universe of all annotated genes using g:Profiler90. The follow-

ing data sources were used; Kyoto Encyclopaedia of Genes and Genomes (KEGG)91, Reactome92, WikiPathways93,

and Gene Ontology94. Multiple testing was corrected for using the g:SCS algorithm90, with a threshold of P < 0.01.

Input lists were ordered by MAIC score were appropriate. In the case of GO cellular component terms, we used the

REVIGO tool to perform multi-dimensional scaling of the matrix of all pairwise semantic similarities95. Enrichment

was also performed against the National Human Genome Research Institute GWAS Catalog96 using the Enrichr web-

interface97. Protein-protein interaction enrichment was performed using STRING v1198. We included all possible
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interaction sources but specified a minimum interaction score of 0.7. We used the the whole annotated genome as the

statistical background. The MCL (Markov Clustering) algorithm[PMID: 22144159] was applied to the resulting net-

work with an inflation parameter of 3. Clusters were annotated by hand having considered enrichment against KEGG,

Reactome, and WikiPathways. To identify hub genes within the PPI network, we used cytoHubba99 and Cytoscape100.

The highest ranked genes by Maximum Neighbourhood Component (MNC), Maximal Clique Centrality (MCC), Den-

sity of MNC (DMNC), Edge Percolated Component (EPC), and node degree were retrieved. The intersecting genes

of these methods were deemed hub genes. Hub genes were searched for in the Drug Gene Interaction Database101 to

identify if they were present in the druggable genome. The Drug Gene Interaction Database (DGIdb) was queried for

each ranked gene102.

Software and code availability

MAIC is implemented in Python v3.9.7 (Python Software Foundation, Wilmington, United States). All other analyses

were performed with R v4.2.2 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria). Code required

to reproduce the analyses is available at https://github.com/JonathanEMillar/ards_maic_analysis. An R package

(ARDSMAICR) containing the data used in this manuscript and several functions helpful in analyses is available at

https://github.com/baillielab/ARDSMAICr.
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Search Strategy

We used the following strategy to search MEDLINE and a direct translation to search Embase.

1 exp Respiratory Distress Syndrome, Adult/

2 “acute lung injury*“.ti,ab,kf,kw

3 1 OR 2

4 “gene*“.mp

5 “genome*“.mp

6 “transcript*“.mp

7 “protein*“.mp

8 4 OR 5 OR 6 OR 7

9 3 AND 8

10 (“COVID-19*” OR “COVID19*” OR “COVID-2019*” OR “covid”).ti,ab,kf,kw

11 (“SARS-CoV-2*” OR “SARSCov-2*” OR “SARSCoV2*” OR “SARS-CoV2”).ti,sh,kf,kw

12 (“2019-nCoV*” OR “2019nCoV*” OR “19- nCoV*” OR “19nCoV*” OR “nCoV2019*” OR “nCoV-2019*” OR

“nCoV19*” OR “nCoV- 19*“).ti,ab,kf,kw

13 10 OR 11 OR 12

14 9 NOT 13

15 Letter.pt OR Conference Abstract.pt OR Conference Paper.pt OR Conference Review.pt OR Editorial.pt OR Erra-

tum.pt OR Review.pt OR Note.pt OR Tombstone.pt

16 14 NOT 15

17 exp *adolescence/ or exp *adolescent/ or exp *child/ or exp *childhood disease/ or exp *infant disease/ or (ado-

lescen* or babies or baby or boy? or boyfriend or boyhood or girlfriend or girlhood or child or child* or child*3 or

children* or girl? or infan* or juvenil* or juvenile* or kid? or minors or minors* or neonat* or neo-nat* or newborn*

or new-born* or paediatric* or peadiatric* or pediatric* or perinat* or preschool* or puber* or pubescen* or school*

or teen* or toddler? or underage? or under-age? or youth*).ti,kw

18 16 NOT 17

19 ((exp animal/ or nonhuman/) NOT exp human/)

20 18 NOT 19

21 limit 20 to yr=“1967-Current”
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Inclusion criteria

Inclusion:

• Human studies: in-vivo or in-vitro

• Adults (age ≥ 18 years)

• Acute Respiratory Distress Syndrome (ARDS)

– by any contemporaneous definition

• Accepted methodologies:

– CRISPR screen

– RNAi screen

– Protein-protein interaction study

– Host proteins incorporated into virion or virus-like particle

– Genome wide association study

– Transcriptomic study

– Proteomic study

Exclusion:

• Children (age < 18 years)

• Animal studies

• Meta-analyses, in-silico analyses, or re-analysis of previously published data

• Excluded methodologies:

– In-vitro human studies simulating ARDS

– Candidate in-vivo or in-vitro transcriptomic or proteomic studies (defined as those investigating < 50 genes)

– Candidate gene association studies

– Studies including fewer than 5 individuals in either the control or ARDS arm
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Glossary

MAIC score - the score assigned by MAIC to a given gene considering all lists.

Gene score - the score assigned by MAIC to a given gene in a given list.

Total MAIC score - the sum of all scores assigned by MAIC to a genes in a given list.

Contributing total MAIC score - the sum of all scores assigned by MAIC to a genes in a given list where that score

contributes to the MAIC score for that gene (i.e., excluding those gene scores that are not used because a gene score

from another list in the same category is greater).
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Supplementary-Figure 1: Systematic review inclusion diagram. Abbreviations: db - data base; GEO - NCBI Gene
Expression Omnibus.
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Supplementary-Figure 2: Attributing information in MAIC. (a) Shared information between gene lists. Links indi-
cate shared summed common gene scores between studies. (b) Proportion of replicated genes. Circle diameter is equal
to logarithm (base 2) of gene number per list. (c) Total MAIC score (totMS) normalised by number of genes. Over-
lapping circles denote equal normalised totMS and contribution (ctotMS - sum of common gene scores contributing to
MAIC score for a gene), indicating all gene scores contributed to MAIC.
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Supplementary-Figure 3: Overlap between ARDS MAIC and ARDS-associated genes and ARDS MAIC and
coronavirus MAIC. (a) Euler diagram of gene overlap between ARDS MAIC and a BioLitMine search using the
ARDS MeSH term. (b) Schematic overview of a co-expression search for genes identified in the BioLitMine search
but not present in ARDSMAIC and a stacked bar plot of the proportion of the 100most co-expressed genes of this group
and ARDS MAIC. (c) Euler diagram of gene overlap between ARDS MAIC and the ARDS Database of Genes. (d)
Euler diagram of gene overlap between ARDS MAIC and a MAIC of COVID-19 host-response studies. (e) Heatmap
of the 50 top ranked ARDSMAIC genes also prioritised by the coronavirus MAIC, displaying the ARDSMAIC score
for each gene, highest gene score in each category, and the number of supporting gene lists.
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Supplementary-Figure 4: Tissue and cell-specific expression. (a) Bar plot of the tissue type in which genes are
identified - all genes (n=7,085). (b) Bar plot of the tissue type in which genes are identified - prioritised genes (n=1,306).
(c) Bar plot of the proportion of genes identified solely in blood meeting mRNA expression thresholds in bulk lung
tissue. nTPM - normalised transcripts per million. (d) Heatmap of mRNA expression in lung cell-types for genes
identified in studies based on airways sampling. (e) Heatmap of mRNA expression in blood cell-types for genes
identified solely in studies based on blood sampling. (f) Manhatten plot of the top 20 cell types overenriched for
expression of genes identified by studies based on airways sampling. (g) Manhatten plot of the top 20 cell types
overenriched for expression of genes identified by studies based on blood sampling.
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Supplementary-Figure 5: Functional enrichment. (a) Significantly enriched KEGG terms (P < 0.01) for prioritised
genes. Terms size proportional to recall. (b) Significantly enriched WikiPathways terms (P < 0.01) for prioritised
genes. Terms size proportional to recall. (c) Scatter plot of the semantic similarity between signficantly enriched GO
cellular component terms for prioritised genes (d) Manhatten plot of the overenrichment of prioritised genes against
the GWAS catolog.
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Supplementary-Figure 6: PPI clusters. A protein-protein interaction network of prioritsed genes and the 10 largest
graph-based clusters. Functional annotation by hand based on a concencus of enriched Reactome, KEGG, WikiPath-
ways, and GO Biological Process terms.
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Supplementary-Figure 7: Details ofMAIC on sub-groups. (a) Gene prioritisation for the ARDSMAICARDS vs. non-
ARDS controls sub-group using the Unit Invariant Knee method. Intersection of lines identifies elbow point of best-fit
curve. 130 genes in upper left quadrant were prioritied. (b) Euler diagrams of gene overlap between the ARDS vs. non-
ARDS controls sub-group and a BioLitMine search using the ARDSMeSH term and the ARDS Database of Genes. (c)
Shared information between ARDS vs. non-ARDS controls gene lists. Links indicate shared summed common gene
scores between studies. (d) Gene prioritisation for the ARDS MAIC survival sub-group using the Unit Invariant Knee
method. Intersection of lines identifies elbow point of best-fit curve. 33 genes in upper left quadrant were prioritied.
(e) Euler diagrams of gene ovelap between the survival sub-group and a BioLitMine search using the ARDS MeSH
term and the ARDS Database of Genes. (f) Shared information between survival gene lists. Links indicate shared
summed common gene scores between studies. xiii
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Supplementary Table 1. Gene list information content and contribution.

Study Method Category N genes totMS (% sum) ctotMS (% sum)

Sarma1 Transcriptomics RNA-seq 4954 50.8 53.1

Juss2 Transcriptomics Microarray 1318 16 15.7

Sarma1 Transcriptomics scRNA-seq 706 9.8 10.3

Nguyen3 Proteomics Mass Spec 161 2.2 2.1

Wang4 Transcriptomics Microarray 137 1.9 1.9

Bhargava5 Proteomics Mass Spec 233 3.1 1.9

Kovach6 Transcriptomics Microarray 123 1.8 1.9

Bhargava7 Proteomics Mass Spec 144 1.9 1.8

Morrell8 Transcriptomics Microarray 155 1.9 1.7

Christie9 GWAS Genotyping 143 1.4 1.5

Liao10 GWAS Genotyping 67 0.7 0.8

Sarma1 Proteomics Other 60 0.8 0.7

Jiang11 Transcriptomics scRNA-seq 53 0.7 0.6

Batra12 Proteomics Other 39 0.6 0.6

Bime13 GWAS Genotyping 51 0.5 0.5

Bos14 Transcriptomics Microarray 53 0.7 0.5

Chang15 Proteomics Mass Spec 37 0.5 0.5

Mirchandani16 Transcriptomics Microarray 41 0.5 0.4

Mirchandani16 Proteomics Mass Spec 29 0.4 0.4

Liao10 Transcriptomics RNA-seq 43 0.4 0.4

Dong17 Proteomics Mass Spec 27 0.4 0.4

Ren18 Proteomics Other 17 0.3 0.3

Tejera19 GWAS Genotyping 19 0.3 0.3

Howrylak20 Transcriptomics Microarray 28 0.3 0.2

Xu21 GWAS WES 16 0.2 0.2

Chen22 Proteomics Mass Spec 16 0.2 0.2

Zhang23 Transcriptomics RNA-seq 20 0.2 0.2

Kangelaris24 Transcriptomics Microarray 15 0.2 0.2

Meyer25 GWAS Genotyping 10 0.1 0.1

Martucci26 Transcriptomics Microarray 13 0.1 0.1

Zhu27 Transcriptomics Microarray 14 0.1 0.1

Englert28 Transcriptomics RNA-seq 10 0.1 0.1

Lu29 Transcriptomics Microarray 12 < 0.1 < 0.1

Scheller30 Transcriptomics RNA-seq 9 < 0.1 < 0.1

Nick31 Transcriptomics Microarray 4 < 0.1 < 0.1

Guillen-Guio32 GWAS Genotyping 6 < 0.1 < 0.1

Meyer33 GWAS Genotyping 4 < 0.1 < 0.1

Dolinay34 Transcriptomics Microarray 4 < 0.1 < 0.1

Chen35 Proteomics Mass Spec 16 < 0.1 < 0.1
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Study Method Category N genes totMS (% sum) ctotMS (% sum)

Zhang36 Transcriptomics RNA-seq 5 < 0.1 < 0.1

Shortt37 GWAS WES 3 < 0.1 < 0.1

Bowler38 Proteomics Mass Spec 18 < 0.1 < 0.1

Morrell39 Transcriptomics Microarray 1 < 0.1 < 0.1

Abbreviations: GWAS - Genome-wide association study; Mass Spec - Mass spectometry; totMS - Total MAIC score; ctotMS - Contributing total MAIC score; WES -

Whole-exome sequencing. totMS and ctotMS are reported as the percentage of the sum of totMS/ctotMS for all lists included in the analysis.
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Supplementary Table 2. ARDS MAIC prioritised genes found in common by BioLitMine with >= 2 associated

publications.

Gene

Publication

count PubMed IDs

MAIC

rank

TGFB1 8 30395619, 29083412, 28188225, 27309347, 22034170,

20142324, 16100012, 12654639

225

VEGFA 8 24356493, 23542734, 21797753, 19543148, 19349383,

17289863, 15920019, 15741444

320

IL10 8 32217834, 31936183, 30280795, 28432351, 22033829,

21138342, 18242340, 16585075

1268

SFTPB 6 21128671, 18679120, 16100012, 15190959, 14718442,

12490037

177

IL17A 6 34239039, 32795834, 32651218, 30655311, 26709006,

26002979

1294

PI3 5 28187039, 24617927, 19251943, 19197381, 18203972 2

CXCL8 5 22897124, 22080750, 21348591, 17498967, 14729508 3

IL6 5 34757857, 33250487, 32826331, 31261506, 18593632 144

TNF 5 31261506, 22507624, 21784970, 17034639, 16135717 651

NAMPT 4 24821571, 24053186, 18486613, 17392604 58

IL1RN 4 30095747, 29943912, 23449693, 18838927 175

SCGB1A1 4 32787812, 28548310, 18521628, 16215398 187

NPPB 4 28322314, 26359292, 21696613, 19830720 1239

HGF 3 18065658, 17702746, 11943656 343

IL33 3 33936076, 31147742, 23000728 385

CXCL10 3 31651197, 23542734, 23144331 671

S100A12 2 26274928, 24887223 5

MUC1 2 21418654, 17565019 69

PLAU 2 23064953, 17994220 244

EPAS1 2 28613249, 25574837 425

FASLG 2 30385692, 12414525 503

EDN1 2 27765761, 17875064 643

AKT1 2 27607575, 15961723 950

MMP8 2 24651234, 15187163 1223
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Supplementary Table 3. ARDS susceptibility gene list information content and contribution.

Study Method Category N genes totMS (% sum) ctotMS (% sum)

Juss2 Transcriptomics Microarray 1318 54.7 54.7

Nguyen3 Proteomics Mass Spec 161 8.1 7.7

Christie9 GWAS Genotyping 143 6 6.3

Kovach6 Transcriptomics Microarray 123 5.8 6.1

Wang4 Transcriptomics Microarray 137 5.8 6

Jiang11 Transcriptomics scRNA-seq 53 2.9 3

Bime13 GWAS Genotyping 51 2.2 2.3

Mirchandani16 Transcriptomics Microarray 41 1.7 1.6

Chang15 Proteomics Mass Spec 37 1.9 1.5

Mirchandani16 Proteomics Mass Spec 29 1.4 1.3

Howrylak20 Transcriptomics Microarray 28 1.2 1.3

Ren18 Proteomics Other 17 1 1.1

Tejera19 GWAS Genotyping 19 0.9 1

Chen35 Proteomics Mass Spec 16 0.9 0.9

Zhang23 Transcriptomics RNA-seq 20 0.8 0.9

Zhu27 Transcriptomics Microarray 14 0.6 0.6

Kangelaris24 Transcriptomics Microarray 15 0.7 0.6

Englert28 Transcriptomics RNA-seq 10 0.6 0.6

Lu29 Transcriptomics Microarray 12 0.5 0.5

Meyer25 GWAS Genotyping 10 0.4 0.4

Bowler38 Proteomics Mass Spec 18 0.9 0.4

Scheller30 Transcriptomics RNA-seq 9 0.4 0.3

Guillen-Guio32 GWAS Genotyping 6 0.2 0.2

Zhang36 Transcriptomics RNA-seq 5 0.2 0.2

Dolinay34 Transcriptomics Microarray 4 0.2 0.2

Shortt37 GWAS WES 3 0.1 0.1

Meyer33 GWAS Genotyping 4 < 0.1 0.1

Morrell39 Transcriptomics Microarray 1 < 0.1 < 0.1

Abbreviations: GWAS - Genome-wide association study; Mass Spec - Mass spectometry; totMS - Total MAIC score; ctotMS - Contributing total MAIC score; WES -

Whole-exome sequencing. totMS and ctotMS are reported as the percentage of the sum of totMS/ctotMS for all lists included in the analysis.
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Supplementary Table 4. ARDS survival/severity gene list information content and contribution.

Study Method Category N genes totMS (% sum) ctotMS (% sum)

Bhargava7 Proteomics Mass Spec 144 30.4 30.3

Morrell8 Transcriptomics Microarray 155 29.7 29.7

Liao10 GWAS Genotyping 67 12.9 13

Batra12 Proteomics Other 39 9.4 9.4

Liao10 Transcriptomics RNA-seq 43 8.5 8.5

Xu21 GWAS WES 16 3.5 3.5

Chen22 Proteomics Mass Spec 16 3.4 3.4

Lu29 Transcriptomics Microarray 12 2.2 2.2

Abbreviations: GWAS - Genome-wide association study; Mass Spec - Mass spectometry; totMS - Total MAIC score; ctotMS - Contributing total MAIC score; WES -

Whole-exome sequencing. totMS and ctotMS are reported as the percentage of the sum of totMS/ctotMS for all lists included in the analysis.
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Supplementary Data

Supplementary Data Files 1-8
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Supplementary Data File 1. Raw gene list input to MAIC.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_1.csv

Supplementary Data File 2. MAIC output - overall.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_2.csv

Supplementary Data File 3. BioLitMine and ARDS Database of Genes results.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_3.csv

Supplementary Data File 4. MAIC output - ARDS vs. non-ARDS controls sub-group.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_4.csv

Supplementary Data File 5. MAIC output - survival sub-group.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_5.csv

Supplementary Data File 6. Functional enrichment results - overall.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_6.csv

Supplementary Data File 7. Functional enrichment results - ARDS vs. non-ARDS controls sub-group.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_7.csv

Supplementary Data File 8. Functional enrichment results - survival sub-group.

https://github.com/JonathanEMillar/ards_maic_manuscript/Supplementary_Data_File_8.csv
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