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Abstract: 

Cutaneous squamous cell carcinoma (cSCC) is one of the most common cancers in humans and kills as many 

people annually as melanoma. The mutational and transcriptional landscape of cSCC has identified driver 

mutations associated with disease progression as well as key pathway activation in the progression of pre-

cancerous lesions. The understanding of the transcriptional changes with respect to high-risk 

clinical/histopathological features and outcome is poor. Here, we examine stage-matched, outcome-

differentiated cSCC and associated clinicopathologic risk factors using whole exome and transcriptome 

sequencing on matched samples. Exome analysis identified key driver mutations including TP53, CDKN2A, 



  
 

  
 

NOTCH1, SHC4, MIIP, CNOT1, C17orf66, LPHN22, and TTC16 and pathway enrichment of driver mutations 

in replicative senescence, cellular response to UV, cell-cell adhesion, and cell cycle. Transcriptomic analysis 

identified pathway enrichment of immune signaling/inflammation, cell-cycle pathways, extracellular matrix 

function, and chromatin function. Our integrative analysis identified 183 critical genes in carcinogenesis and 

were used to develop a gene expression panel (GEP) model for cSCC. Three outcome-related gene clusters 

included those involved in keratinization, cell division, and metabolism. We found 16 genes were predictive of 

metastasis (Risk score ≥ 9 Met & Risk score < 9 NoMet). The Risk score has an AUC of 97.1% (95% CI: 

93.5% - 100%), sensitivity 95.5%, specificity 85.7%, and overall accuracy of 90%. Eleven genes were chosen 

to generate the risk score for Overall Survival (OS). The Harrell’s C-statistic to predict OS is 80.8%. With each 

risk score increase, the risk of death increases by 2.47 (HR: 2.47, 95% CI: 1.64-3.74; p<0.001) after adjusting 

for age, immunosuppressant use, and metastasis status.  



  
 

  
 

Introduction: 

Non-melanoma skin cancers (NMSC) are the most common cancer in humans, and the fifth most costly 

[1-3]. cSCC reportedly metastasizes in up to 5% of patients and kills as many people annually as melanoma 

[4]. Current staging systems, American Joint Committee on Cancer (AJCC)-8 and Brigham Women’s Hospital 

(BWH), use clinical and histopathological risk factors to assess risk of recurrence or metastasis [5-7]. Both 

staging systems have defined intermediate to high-risk tumors as T2 or higher. The BWH further refines T2 

lesion classification into T2a and T2b based on the number of clinical and histopathological risk factors 

present. T2a tumors (18.3% of all cSCC) are identified as intermediate risk, with a local recurrence rate of 5%, 

lymph node involvement in up to 7%, and disease-specific death in 1% [8]. Although T2a tumors are less likely 

to have poor outcomes, there are a subset of tumors within this group that have a high risk for local recurrence 

and nodal metastasis. For example, T2a tumors that invade the subcutaneous fat can spread to lymph nodes 

in up to 22% of cases [8]. Thus, further refinement of the T2a classification is needed. T2b tumors (4.7% of all 

cSCC) are considered high risk with a local recurrence rate of 21%, lymphatic metastasis in up to 30%, and 

disease-specific death in 10% [8]. Patients with T2b tumors and T3 have been defined as a group that may 

benefit from pre-operative imaging, a sentinel lymph node biopsy, and post-operative radiation [8, 9].  

Progress in understanding altered genes in cancer has led to the identification of improved prognostic 

biomarkers [10]. Whole exome sequencing (WES) of aggressive cSCC (characterized by frequent recurrences, 

increased risk of metastasis, and high disease-related mortality) identified TP53, CDKN2A, NOTCH1,2, and 

AJUBA as candidate driver genes [11-15]. WES of well- and moderately-differentiated cSCC also identified 

phenotype-specific (e.g., high-risk histological features) candidate driver genes and biological functions [11, 

14]. WES of lymph node metastases of cSCC identified CDKN2A, TP53, and NOTCH1 as candidate driver 

genes, and showed that dysregulation of RAS/TRK/PI3K, cell cycle, and cellular differentiation pathways is 

present in the metastatic setting [13]. 

Gene expression arrays have demonstrated transcriptomic differences between cSCC and actinic 

keratoses (AK) as well as between different histological phenotypes of cSCC [12]. The MAPK pathway was 

found to play a role in the transition from pre-cancer to malignancy, and unsupervised hierarchal clustering 



  
 

  
 

revealed that well-differentiated tumors cluster separately from moderately and poorly differentiated tumors 

[12, 16]. However, understanding of the transcriptional changes with respect to high-risk 

clinical/histopathological features and outcome is poor. Multi-gene prognostic modeling in high-risk cSCC has 

demonstrated promise in early reports [17, 18]. To date, there have been no prognostic models integrating 

WES and whole transcriptomic sequencing on matched samples. Herein, we perform integrated genomics and 

transcriptomics on a homogenous group of stage-matched cSCC tumors with known outcomes (metastasis 

versus no-metastasis) and present the first prognostic model developed using multi-omic data.  

Methods: 
 
Case identification and Histopathological Review 

This study was approved by the Mayo Clinic Institutional Review Board IRB 21-012833. A total of 61 

cases of cSCC were identified from our retrospective cSCC database comprised of patients receiving care at 

Mayo Clinic (Jacksonville, Florida; Rochester, Minnesota; and Scottsdale, Arizona). These were identified 

through an enterprise-wide search for cases with a histopathologic diagnosis of cSCC from pathology reports 

of archived specimens. Tissue samples were selected based on clinical outcomes (local recurrence, regional 

metastasis [including nodal and in-transit metastasis], and distant metastasis), histopathologic features, and 

tissue availability. Tissue samples were selected consecutively between January 1, 1999, and February 2, 

2022. All tissues identified at inclusion were BWH stage T2a and T2b prior to histopathological review. All 

cases underwent histopathologic rereview by board-certified dermatopathologists to confirm pathological 

staging (D.J.D. and S.A.N.) and had at least 18-months of clinical follow-up data. Clinical characteristics were 

collected from the electronic medical record, including age, sex, immunosuppression status, and tumor stage 

(BWH and AJCC seventh edition). Reviewers were blinded to outcome. 

Whole Exome Sequencing and Analysis 

Tissue identification, preparation, and exome sequencing 

We performed whole exome sequencing (WES) on 61 primary tumors (32 metastatic and 29 non-

metastatic) and 59 normal controls from a cohort of 59 patients (two patients with multiple primary tumors). 

Primary tumor and normal control tissues were macrodissected from serial unstained slides as guided by a 



  
 

  
 

board-certified dermatologist. DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissues using 

the GeneRead FFPE kit following manufacturer recommendations (Qiagen). Paired-end libraries were 

prepared with as low as 10 ng of FFPE DNA using the SureSelect XT Low Input Reagent Kit (Agilent, Santa 

Clara, CA). Briefly, adaptor-ligated DNA was amplified with the SureSelect Pre-Capture forward and specific 

index reverse primers for 12 cycles. The concentration and size distribution of the amplified libraries were 

determined using an Agilent Bioanalyzer DNA 1000 chip or Advance Fragment Analyzer and Qubit fluorometry 

(Invitrogen, Carlsbad, CA). Whole exon capture was then carried out using 750 ng of the prepped library, 

following the protocol for Agilent’s SureSelect Human All Exon v5 + UTRs 75 MB kit. The purified capture 

products were amplified using the SureSelect Post-Capture Indexing forward and Index PCR reverse primers 

for 12 cycles. The concentration and size distribution of the captured libraries were determined using Qubit 

fluorometry and the Agilent Bioanalyzer DNA 1000 chip. Libraries were sequenced at an average coverage of 

approximately 80x following Illumina's standard protocol using the Illumina cBot and HiSeq 3000/4000 PE 

Cluster Kit. The flow cells were sequenced as 150 X 2 paired end reads on an Illumina HiSeq 4000 using the 

HiSeq Control Software HD 3.4.0.38 collection software. Base-calling was performed using Illumina’s RTA 

version 2.7.7. 

Alignment and Somatic variant calling  

Genome_GPS v5.0.3 (formerly known as TREAT) was used as a comprehensive secondary analysis 

pipeline for DNA sequencing data [19]. FASTQ files were aligned to the hg38 reference genome using bwa-

mem (v0.7.10) with default settings. Realignment was performed using GATK (v3.4–46) [20]. To identify 

somatic mutations, the workflow employed a combination of Mutect2 and Strelka2 [21, 22]. Identified variants 

were annotated using BioR framework, which included functional features, impact prediction, and clinical 

significance assessments using databases such as Clinical Annotation of Variants, ClinVar, Human Gene 

Mutation Database, Mayo Biobank, and Exome Aggregation Consortium population frequencies [23]. 

Somatic variant filtering  

Raw variants were filtered based on the following criteria: minimum alternate allele fraction of 10%, 

minimum number of reads supporting the alternate allele of 2, and a minimum read depth of 10. Additionally, 



  
 

  
 

variants located in repetitive element regions defined by RepeatMasker (v4.1.2) or the Simple Repeat track in 

the UCSC Genome Browser were excluded. OxoG artifacts were removed using the Picard tools 

CollectOxoGMetrics and FilterByOrientationBias (v2.21.6). Common variants were further eliminated based on 

their minor allele frequency (>= 0.01) as recorded in the 1000 Genomes Project.  

Driver genes identification  

To identify coding driver genes, three discovery algorithms were employed: MutSigCV (v1.41), 

OncodriveFML (v2.4.0), and OncodriveCLUSTL (v1.1.1) [24-26]. MutSigCV was used to detect driver genes 

based on recurrence, OncodriveFML was used to identify drivers enriched for mutations with high functional 

impact using whole exome mutation frequencies to model the background mutation rate, and 

OncodriveCLUSTL was used to detect drivers containing clusters of mutations. The default parameter settings 

were used for all three algorithms. A p-value was generated for each gene by each algorithm, and genes were 

considered as drivers when p < 0.05 for at least two out of the three algorithms.  

 Whole Transcriptome Sequencing and Analysis 

Tissue preparation and RNA sequencing 

We performed whole transcriptome sequencing on a total of 53 primary tumors including 22 metastatic 

and 31 non-metastatic lesions from 50 patients (3 patients had multiple primary tumors). Twenty-two tumor-

adjacent normal controls were sequenced and utilized for differential gene expression analysis. Primary tumor 

and normal control tissues were macrodissected from serial unstained slides as guided by a board-certified 

dermatologist. RNA was isolated from FFPE tissue using the RNeasy FFPE kit (Qiagen) following 

manufacturer recommendations. Total RNA concentration and quality were determined using Qubit fluorometry 

(Invitrogen, Carlsbad, CA) and the Agilent Fragment Analyzer (Santa Clara, CA). Samples with a DV200 of 

30% or better proceeded to library prep. Using the Illumina TruSeq® RNA Exome Library Prep kit (San Diego, 

CA), libraries were prepared according to the manufacturer’s instructions using up to 500 ng of FFPE RNA. 

The concentration and purity of cDNA libraries were checked using the TapeStation D1000 (Agilent, Santa 

Clara, CA). Coding regions of the transcriptome were captured by pooling four of the cDNA libraries at 200 ng 

each. The concentration and size distribution of the completed libraries were determined using an Agilent 



  
 

  
 

Bioanalyzer DNA 1000 chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen, Carlsbad, CA). Libraries were 

sequenced at 8 samples per lane following Illumina’s standard protocol using the Illumina cBot and HiSeq 

3000/4000 PE Cluster Kit. The flow cells were sequenced as 100 X 2 paired end reads on an Illumina HiSeq 

4000 using the HiSeq Control Software HD 3.4.0.38 collection software. Base-calling was performed using 

Illumina’s RTA version 2.7.7. 

All samples were sequenced at the Mayo Clinic Medical Genome Facility Sequencing Core by Illumina 

HiSeq 4000 with paired end 101-base pair (bp) read length. Approximately 60 million reads per sample were 

generated. MAP-Rseq v3 was used to analyze RNA-Sequencing data [27]. The aligning and mapping of reads 

were performed using TopHat2 against the human reference genome (hg38). Gene counts were generated by 

FeatureCounts using the gene definitions files from Ensembl. RseqQC was used to create a variety of quality 

control plots to ensure the results from each sample were reliable for the downstream differential expression 

analysis.  

The R software package DESeq2 was used for differential gene expression analysis [28]. Differentially 

expressed genes (DEGs) between SCCs (n=53) and controls (n=22) are identified by adjusted p-values 

<0.0001 and log 2-fold change >1 (up-regulated) or <-1 (down-regulated). Pathway enrichment analysis was 

performed using the Reactome pathway database on up- and down-regulated genes. DEGs in the top enriched 

pathways with FDR-corrected Benjamin p value <0.05 were extracted for gene-gene interaction network 

analysis using STRING gene/protein interaction database. We used StringDB to identify regulatory hub genes 

(those with the highest number of known gene interactions) within these pathways [29]. The hub genes were 

identified by the number of interactions those genes have with the others. We selected top 50 up-regulated and 

down-regulated hub genes for establishing SCC molecular panel. Similarly, DEGs between Met and NoMet 

groups are identified by FDR-adjusted p values < 0.05 and log 2-fold change >1 (up-regulated) or less than <-1 

(down-regulated). Fourteen of them also carry mutations identified by exome sequencing data and were 

included in the SCC molecular panel.  

Integration of RNA and DNA for gene expression panel (GEP) 



  
 

  
 

We compiled a list of 183 genes for a cSCC gene expression panel (GEP) through multi-omic data 

integration, including high-interest genetic mutations identified through exome sequencing as well as results 

identified through various transcriptomics approaches as outlined in previous sections. To identify functionally 

relevant mutated genes, the list of somatic mutations was further filtered through the selection of mutations, 

including driver mutations by two calling systems, high Clinical Annotation of VAriants (CAVA) score with a 

threshold cutoff of 10 mutations, top 20 mutated genes [initially using a nested cohort of 45 cases for 

optimization (Data not shown) and 61 cases in final derivation], top 50 minor allelic frequency and gene 

expression changes of log 2-fold change  > 1 or < -1 [30]. Transcriptomic data was selected based on the top 

50 up- and down-regulated hub gene selection of enriched pathways identified above as well as the key 

differential genes between metastatic and non-metastatic tumors. 

 Data normalization and modeling 

Expression value tiering for modeling analysis. 

 The gene expression data of 183 genes were pulled from the raw data of standard secondary analysis 

pipeline. The expression values were then sorted by log 2-scale. We developed expression tiers by comparing 

each gene’s expression value in each tumor sample to its respective mean expression in the control group. 

Genes with expression values at least one standard deviation greater than the control group mean were 

assigned a value of 1; those with expression values at least one standard deviation less than the control group 

mean were assigned a value of -1. The remaining genes were assigned a value of 0. In summary, the genes 

are categorized as follows:�1 (expr > mean + n*sd), -1 (expr < mean - n*sd), and otherwise 0,�where n is 

either 1 or 0.� 

 Gene expression profiling of selected genes for survival and metastasis 

Partitioning Around Medoids (PAM) method was used to cluster the genes to investigate the 

correlations between them [31]. Gap statistic was used as the criteria to choose the optimal number of clusters. 

Pearson correlation coefficients using the genes’ normalized raw expression data were calculated and 

presented in a heat map. To choose the genes that are potentially predictive of metastasis, logistic least 

absolute shrinkage and selection operator (LASSO) regression was used. 100 cross-validation logistic LASSO 



  
 

  
 

regression was used to screen the genes that can be associated with metastasis. The genes that were chosen 

50 times or more were further considered [32]. For the genes that were chosen by the LASSO regression, 

univariate analysis with metastasis status was further investigated using Fisher’s exact test. The genes that 

were significant from Fisher’s exact test and had up-regulated or down-regulated associations with metastasis 

were chosen to generate the risk score for metastasis. For the generated risk score, receiver operating 

characteristic curve (ROC) analysis was conducted and Youden index was used to choose the optimal cut-off 

point to predicting metastasis. The area under the ROC curve (AUC) was calculated. The sensitivity, specificity 

and overall accuracy of the optimal cut-off point for predicting metastasis were also calculated.  

Regularized Cox regression was used to choose the genes that are potentially associated with overall 

survival [33]. A similar modeling strategy was applied – 100 cross-validation regularized Cox regression was 

used to choose the genes associated with overall survival; among the 100 cross-validation models, the genes 

selected 50 times or more were further considered. For the genes that were chosen by the LASSO Cox 

regression, log-rank test and Kaplan-Meier curves were used to investigate their association with overall 

survival. DEGs associated with worse overall survival were chosen to generate risk scores for overall survival. 

The risk scores were combined into low-risk, medium-risk, and high-risk groups based on their Kaplan-

Meier curves. The median survival time for each risk group was further estimated. Harrell’s C-statistics for the 

risk score predicting overall survival was calculated. Multivariable Cox regression adjusting for age, 

immunosuppressant use, and metastasis status was used to investigate the association between the risk score 

and overall survival.   

Results: 
 

A total of 61 cases were selected for exome sequencing (Table 1). Fifty patients were selected for 

transcriptomic sequencing; patient demographics are shown in Supplemental Table 1. Detailed RNA-seq 

sample group information is shown in Supplemental Table 2. 

Whole exome sequencing 

Whole exome sequencing was performed on 61 tumors (PMet=29, PNoMet=32) and normal control 

tissues from 59 patients. We generated on average 119 ± 19 (mean±SD) million reads per sample with an 



  
 

  
 

average mapping rate of 99.8% ± 0.001% (mean±SD). The median depth of the sequencing is 155 (49-224), 

with 92% bases covered at 10X and 69% at 40X, on average. We identified 104,633 mutations within the 

coding regions across 17,094 genes, and 2,547 somatic variants were identified across 3 mutational callers 

with p-value <0.05 (see Methods, Supplemental Table 3 & Supplemental Figure 2). C>T transitions accounted 

for 86% of all SNV mutations (Supplemental Figure 2). Somatic mutations in the top 20 genes by Oncoplot 

were seen in 59 out of 61 tumor samples (96.72%) (Figure 1A). The most frequently mutated genes are seen 

in Figure 1A and include genes of interest: TP53 (66%), NOTCH1 (69%), and FAT3 (66%). Gene function 

enrichment analysis (GFEA) found these mutated genes to be highly enriched in pathways in cell adhesion, 

endocytosis, regulation of small GTPase mediated signal transduction, and collagen fibril organization and 

extracellular matrix organization (Figure 1B, Supplemental Table 4). Driver mutation analysis was performed 

utilizing three mutational callers [MutSigCV (v1.41), OncodriveFML (v2.4.0), and OncodriveCLUSTL (v1.1.1)]. 

For integrative analysis, we prioritized 220 driver genes called from at least two mutational callers 

(Supplemental Table 5), including TP53, CDKN2A, NOTCH1, SHC4, MIIP, CNOT1, C17orf66, LPHN22, and 

TTC16 as identified through all three calling systems (Figure 1C). Driver mutations common to both metastatic 

and non-metastatic cSCC include TP53, NOTCH1, CDKN2A, MROH2A, KMT2D, PARD3, and FAT1 (Figure 

1D). 220 Driver genes were found to be most enriched in pathways of replicative senescence, cellular 

response to UV, and cell adhesion and cell cycle (Figure 1E, Supplemental Table 6).  

Whole transcriptome sequencing   

Whole transcriptome sequencing was performed on a total of 53 primary tumors (PMet = 22, PNoMet = 

31) and 22 normal controls from 50 patients (3 patients had multiple primary tumors) (Supplemental Figure 3). 

We generated on average 53 ± 27 (mean±SD) million reads per sample with an average mapping rate of 96% 

± 2.37% (mean±SD). The total number of genes with non-zero counts was 44,307. We identified a total of 

4,534 DEGs (1,966 up-regulated and 2,568 down-regulated) between tumor vs. controls |log2FC>1|, p-

adj<0.05 (Supplemental Table 7). We identified a total of 39 DEGs (33 up-regulated and 6 down-regulated) 

when comparing primary tumors that metastasized vs those that did not metastasize (n=22 and n=31, 

respectively Supplemental Figure 4). Notable up-regulated genes in tumors vs. controls include: MMP1 



  
 

  
 

(Log2FC- 5.6), LAMC2 (Log2FC- 3.8), 2, CDKN2A (Log2FC- 3.6), and MMP10 (Log2FC- 7.8) and down-

regulated genes include: CFD (Log2FC- 3.3), AR (Log2FC- 3.0), and ABCA10 (Log2FC- 2.4) (Figure 2A). 

GFEA showed up-regulation of immune and viral response, adaptive immune response, and cell division 

pathways (Figure 2B, Supplemental Table 8) and down-regulation of keratinization and epidermis 

development, intermediate filament organization, and metabolic processes pathways (Figure 2C, Supplemental 

Table 9). Master regulatory hub genes were identified amongst the top enriched pathways (Supplemental 

Figure 5). The top 50 regulatory hub genes are shown in Figures 2D and 2E, respectively. The top 50 gene 

sets are enriched for highly interacting genes in immune function.  

Integrative Analysis of Exome and Transcriptome Sequencing 

A total of 183 critical genes were identified through integrative analysis of driver mutations, functional 

enrichment of mutated and differentially expressed genes, and master regulatory genes (See Methods, Figure 

3A,B,& D, Supplemental Table 10). Through our combinatorial technique, we selected key driver genes to 

emphasize oncogenes, and crucial hub genes to feature those related to immune function. 

Derivation of gene panel 

Using the PAM method, 183 genes clustered into 9 groups/clusters including 3 functionally enriched 

clusters in keratinization, cell division, and metabolism (Figure 3C, Figure 4, Supplemental Table 11). Fifty 

patients (22 Met, 28 NoMet; Supplemental Table 1, Supplemental Table 2) were used to model outcomes, and 

16 genes were predictive of metastasis (Risk score ≥ 9 Met & Risk score < 9 NoMet). The Risk score for 

metastasis has an AUC of 97.1% (95% CI: 93.5% - 100%), sensitivity 95.5%, specificity 85.7%, and overall 

accuracy 90% (Figure 4A). Genes predictive of metastasis include: up-regulated: CSAG1, UBE2C, ANKRD1, 

CSMD3, TOP2A, TPX2, KSR2, CSMD2, MMP20, PCSK1, TMEM150B; up-regulated or no change: RGL3, 

PLA2G6; down-regulated: ACSL1, TSGA10, and KIT (Figure 4C,D; Supplemental Table 12). Univariate 

analysis with overall survival was performed using log-rank test for the 12 genes that were chosen by the 

model (Figure 4C,D; Supplemental Table 12). Eleven genes were chosen to generate the risk score for OS 

(Figure 4B). The Harrell’s C-statistic to predict OS is 80.8%. With each risk score increase, the risk of death 



  
 

  
 

increases by 2.47 (HR: 2.47, 95% CI: 1.64-3.74; p<0.001) after adjusting for age, immunosuppressant use, 

and metastasis status (Supplemental Table 13). 

 

Discussion: 
 

We have performed the first exome and transcriptomic sequencing on stage-matched, outcome-

differentiated samples of intermediate and high-risk (T2a and T2b) cSCC. Through WES, we characterize the 

genomic landscape of intermediate to high-risk cSCC. In addition to commonly known driver mutations (TP53, 

NOTCH1, CDKN2A, FAT1), we identified unique driver genes including MROH2A, KMT2D, PARD3, SHC4, 

MIIP, CNOT1, C17orf66, LPHN2, and TTC16 [11, 34-36]. Some of these unique driver genes were found to be 

driver genes in lung SCC (KMT2D, LPHN2), bladder cancer (PARD3), colorectal cancer (MIIP), and 

hypothesized to be a potential driver in cSCC (PARD3) [14, 37-40]. Namely, KMT2D, which codes for a histone 

methyltransferase, has been implicated in several different types of cancers and more recently has been 

suggested to be driving lung squamous cell carcinoma through epigenetic modifications [38, 41]. Others that 

were found to be implicated in carcinogenesis include MROH2A, SHC4, CNOT1, and C17orf66, but further 

investigation is needed to define their roles [42-45]. In total, 220 driver genes were found to be enriched in 

replicative senescence, cellular response to UV, cell adhesion, and cell cycle pathways. We found that UV 

mutations accounted for most of the somatic mutations. Notably, when we performed driver enrichment 

analysis, UV-driven processes were found to be a primary enriched pathway that drove the disease. Mutation 

load has been correlated with cumulative UV exposure as well as keratinocyte cancer burden [34]. Our study is 

the first to perform driver enrichment analysis that establishes the critical role of UV in driving aggressive 

cSCC. We found other well-known cancer pathways when performing driver gene enrichment analysis such as 

replicative senescence, cell adhesion, and cell cycle pathways [11, 34-36].  

Through whole transcriptome sequencing, we identified DEGs between tumor vs. control and between 

primary tumors that metastasized vs those that did not metastasize, many of which have not been previously 

reported in cSCC. Significantly upregulated DEGs included genes in the matrix metalloproteinase (MMP) 

family such as MMP1, MMP3, MMP10, MMP12, and MMP13, highlighting the importance of extracellular 



  
 

  
 

matrix remodeling and stromal response in carcinogenesis [46]. We then leveraged interactional gene 

networks to identify master regulatory hub genes and discovered functionally relevant pathways in cSCC 

development, including immune- and stromal-related genes. Consistent with previous studies, immune 

response, keratinization, and metabolic pathways were among the most highly enriched [35].  

We implemented a comprehensive approach by selecting key driver genes and hub genes, highlighting 

oncogenes and genes critical to immune function, respectively. We identified 183 genes critical to cSCC 

carcinogenesis that were predictive of metastasis and survival [11-15, 47-54]. We found three distinct 

functional clusters of genes involved in metabolism, keratinization, and cell division. Genes involved in 

metabolic pathways are known to be down-regulated in metastatic cSCC, we are the first to show they predict 

overall survival [15]. We performed modeling and identified 16 genes predictive of metastasis with an accuracy 

of 90%, specificity of 86%, and sensitivity of 96%. We also identified 11 genes that are independently 

associated with lower survival with a survival prediction accuracy of 81%. The predictive genes were up-

regulated in common pathways by GFEA including: cell division (BIRC5, UBE2C, TPX2), apoptotic process 

(BIRC5, MELK, TPX2), and mitotic cell cycle (BIRC5, TPX2). Unique genes were up-regulated in immune 

response (IFNE), cellular response to hypoxia (ANKRD1), cell-cell signaling (PCSK1), and cell proliferation 

pathways (MELK). The genes were downregulated in common pathways by GFEA including: lipid metabolic 

process (HMGCS1, PLA2G6), response to drug (HMGCS1, ACSL1), signal transduction (ANK2, KIT), as well 

as pathways of interest such as cell-cell adhesion (FAT4), cell adhesion (LAMA2), fibroblast growth factor 

receptor signaling pathway (FAT4).  

 Previous work has identified GEP signatures that may predict metastatic risk, but these have not been 

able to predict both metastasis and survival [17, 18, 55]. Other GEP derivations were inclusive of large 

numbers of low-risk tumors unlikely to metastasize, only controlling for age, sex, and tumor location, neglecting 

to control for stage [18]. Intermediate to high-risk tumors (BWH T2a & T2b) are known to have more outcome 

variability, making prediction and risk-stratification increasingly difficult [5]. Our primary tumors were 

phenotypically similar but were stage- and immunosuppression-matched to identify the molecular and genetic 

differences underlying their behavior and outcomes. We identified the enrichment of unique, critical pathways 



  
 

  
 

of cSCC carcinogenesis that predict outcomes of stage-matched, outcome differentiated tumors. Our GEP 

profile has the potential to guide management through the accurate identification of at-risk tumors as well as 

the ability to predict survival in individuals with intermediate to high-risk cSCC. Future studies examining the 

performance of our assay across the spectrum of cSCC is warranted.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

  
 

 
 
 
 
Figures: 
 

 
Figure 1. Exome-seq mutation analysis. 

A. Top 20 most common mutated genes in SCC patients. 
B. The enriched gene functions and pathways in 2547 mutated genes (potential drivers identified by

least 1 of 3 analysis tools) in the SCC patients (n=61).  
C. Prioritized mutated genes using 3 analysis tools. 
D. Mutated driver genes have been identified by a minimum of two out of three analysis tools in met

(PMet) and non-metastasis (PNoMet) patients. 
E. Gene functions and pathways enriched in the 220 mutated genes in Panel D. 
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Figure 2. RNA-seq analysis.  
A. Volcano plot of differential genes of cSCC (n=53) vs. Controls (n=22) with highly significant genes 
highlighted. 
B. Top 10 enriched pathways in the upregulated differentially expressed genes (DEGs). 
C. Top 10 enriched pathways in the downregulated DEGs. 
D. Top 50 upregulated hub genes identified by gene interaction network analysis on genes in enriched 
upregulated pathways with Benjamin p value < 0.05. 
E. Top 50 downregulated hub genes in gene interaction network of genes in enriched downregulated pa
with Benjamin p value < 0.05. 
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Figure 3. The establishment of SCC biomarker panel. 
A. Data integration pipeline for building SCC-specific marker panel of 183 genes for modeling analy

The panel includes top 50 upregulated hub genes, top 50 downregulated hubs, top 14 DEGs bet
Met vs. NoMet from RNA-seq analysis, and 69 prioritized mutated genes identified by exome-seq
analysis. 

B. Volcano plot show these 183 genes in RNA-seq analysis between SCC and control samples. 
C. The correlation heatmap of these 183 genes with main gene function highlighted for the 3 major 

clusters. 
D. Gene expression heatmap highlights the different patterns in SCC vs. Ctrl and Met vs. NoMet 
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Figure 4. Modeling analysis of SCC biomarker panel. 

A. The AUC using the risk score to predict metastasis. 
B. The overall survival probability curve  
C. Modeling-selected genes related to metastasis and overall survival are highlighted in the volcano

183 genes. 
D. The heatmap shows the expression patterns of these 27 genes selected by modeling analysis. 
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Tables 
  

  PMet (N=29) PNoMet (N=30) Total (N=59) p value 

Age at diagnosis    0.0351 

  Mean (SD) 72.5 (10.9) 78.0 (10.6) 75.3 (11.0)  

  Median 72.2 81.4 77.3  

  Q1, Q3 66.7, 80.1 73.6, 83.7 67.7, 83.0  

  Range 44.8 - 90.8 52.6 - 93.6 44.8 - 93.6  

Sex    0.7612 

  Female 7 (24.1%) 6 (20.0%) 13 (22.0%)  

  Male 22 (75.9%) 24 (80.0%) 46 (78.0%)  

Race     

  N-Miss 1 0 1  

  White 28 (100.0%) 30 (100.0%) 58 (100.0%)  

Immunosuppression     0.5652 

  N-Miss 0 1 1  

  Yes 10 (34.5%) 7 (24.1%) 17 (29.3%)  

  No 19 (65.5%) 22 (75.9%) 41 (70.7%)  

Tumor stage    0.6042 

  T2a 16 (55.2%) 15 (50.0%) 31 (52.5%)  

  T2b 12 (41.4%) 15 (50.0%) 27 (45.8%)  

  T3 1 (3.4%) 0 (0.0%) 1 (1.7%)  

1. Kruskal-Wallis rank sum test 
2. Fisher’s exact test 

 
Table 1: Patient demographics- The 61 DNA samples are from 59 patients. The 59 patients’ demographics and 
clinical characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  
 

  
 

 
Supplemental Figures: 
 
 

 
Supplemental Figure 1. Summary of the somatic variants identified from 61 tumor samples 

A. Barplot showing the classification of all somatic variants in coding regions 
B. Barplot showing number of somatic variants in each type 
C. Barplot showing number of SNV variants in six different conversions (Transitions and Transversio
D. Barplot showing number of somatic variants in each tumor samples 
E. Boxplot showing the distribution of the somatic mutations in each category among tumor samples

(colors corresponding to each category in A) 
F. Stacked barplot showing fraction of the somatic mutation in each category for top 10 mutated gen

(colors corresponding to each category in A) 
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Supplemental Figure 2. Transitions and Transversions summary of all SNV mutations across 61 tumor 
samples 
A. Overall distribution of six different conversions 
B. Boxplot showing overall Transition and Transversion. 
C. Stacked barplot showing fraction of conversion in each of the tumor samples (colors corresponding to
different conversions in A) 
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Supplemental Figure 3. Transcriptomic profiling using RNA-seq in SCC patient.  

A. PCA analysis of all 75 sample. B. Heatmap of DEGs between tumor and control. 
B. Differentially expressed genes between SCC patient skin tissue samples (SCC, n=53) and health

control skins (CTRL, n=22) 
  

lthy 



  
 

  
 

 

 
Supplemental Figure 4. Transcriptomic profile comparison between metastatic and non-metastatic tumo

A. Volcano plot of differential analysis of Met (n=22) vs. NoMet(n=31).  
B. Top Differential Genes between Met and NoMet, with adj.p < 0.05 & |Log2FC|>1 
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Supplemental Figure 5. Gene interaction network of genes in top enriched pathways. 

A. Gene-gene interaction networks in the genes of top upregulated enriched pathways with Benjam
value < 0.05 

B. Gene-gene interaction networks in the genes of top downregulated enriched pathways with Benja
value < 0.05 
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Supplemental Tables: 
 
Supplemental Table 1: Patient demographics- The 53 RNA samples are from 50 patients. The 50 patients’ 
demographics and clinical characteristics. 
 
 
 

 
PMet (N=22) PNoMet (N=28) Total (N=50) p value 

Age at CSCC 
   

0.1651 

  Mean (SD) 73.4 (12.4) 78.1 (9.2) 76.0 (10.9) 
 

  Median 75.3 79.8 77.9 
 

  Q1, Q3 67.8, 82.4 73.7, 83.8 71.3, 83.2 
 

  Range 44.8 - 90.7 58.2 - 91.6 44.8 - 91.6 
 

Sex 
   

0.1972 

  Female 8 (36.4%) 5 (17.9%) 13 (26.0%) 
 

  Male 14 (63.6%) 23 (82.1%) 37 (74.0%) 
 

Race 
    

  White 22 (100.0%) 28 (100.0%) 50 (100.0%) 
 

Immunosuppressant 
Use    

1.0002 

  Yes 7 (31.8%) 8 (28.6%) 15 (30.0%) 
 

  No 15 (68.2%) 20 (71.4%) 35 (70.0%) 
 

Disease stage    
0.2322 

  T1 1 (4.5%) 0 (0.0%) 1 (2.0%) 
 

  T2a 10 (45.5%) 13 (46.4%) 23 (46.0%) 
 

  T2b 9 (40.9%) 15 (53.6%) 24 (48.0%) 
 

  T3 2 (9.1%) 0 (0.0%) 2 (4.0%) 
 

1. Kruskal-Wallis rank sum test 
2. Fisher’s exact test 

 
 
Supplemental Table 2: Sample Annotation in 75 RNA-seq Samples in cSCC and Control Samples 
 
Supplemental Table 3: Somatic Variant List Identified with Exome-seq 
 
Supplemental Table 4: Enriched Pathways in Somatic Mutations 
 
Supplemental Table 5: 220 Driver Genes Identified by 2 Calling Systems 
 
Supplemental Table 6: Enriched Pathways in 220 Driver Mutations 
 
Supplemental Table 7: DEGs in SCC vs. Ctrl 
 
Supplemental Table 8: Enriched Pathways in Up-regulated DEGs in cSCC vs. Control 
 
 



  
 

  
 

Supplemental Table 9: Enriched Pathways in Down-regulated DEGs in cSCC vs. Control 
 
Supplemental Table 10: 183 Genes Identified by Integrative Analysis 
 
Supplemental Table 11: Enriched Pathways in Clusters in Correlation Heatmap of 183 Gene Panel 
 
Supplemental Table 12: Twenty-seven Genes Predictive of Outcome from 183 Gene Panel  
 
Supplemental Table 13: Overall Survival Multivariable Analysis 
 
 

Characteristic HR1 95% CI1 p-value 
Risk Score based on 11 genes 

(every unit increased) 
2.47 1.64, 3.74 <0.001 

Age at CSCC 1 0.96, 1.04 0.8 
Immunosuppressant Yes vs. 

No 
1.36 0.43, 4.28 0.6 

Metastasis Status Yes vs. No 2.06 0.80, 5.31 0.14 
1 HR = Hazard Ratio, CI = Confidence Interval 
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