
 
 

The Post-Septic Peripheral Myeloid Compartment Reveals 1 

Unexpected Diversity in Myeloid-Derived Suppressor Cells 2 

 3 
Evan L. Barrios1†, John Leary2†, Dijoia B. Darden1, Jaimar C. Rincon1, Micah Willis1, 4 
Valerie E. Polcz1, Gwendolyn S. Gillies1, Jennifer A. Munley1, Marvin L. Dirain1, Ricardo 5 
Ungaro1, Dina C. Nacionales1, Marie-Pierre L. Gauthier3, Shawn D. Larson1, Laurence 6 
Morel4, Tyler J. Loftus1, Alicia M. Mohr1, Robert Maile1, Michael P. Kladde3, Clayton E. 7 
Mathews5, Maigan A. Brusko5, Todd M. Brusko5, Lyle L. Moldawer1, Rhonda Bacher2*, 8 
Philip A. Efron1* 9 
 10 
1Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida 11 
College of Medicine; Gainesville, Florida, USA 12 
2Department of Biostatistics, University of Florida College of Medicine and Public Health and 13 
Health Sciences, Gainesville, Florida, USA 14 
3Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 15 
Gainesville, Florida, USA 16 
4Department of Microbiology and Immunology, University of Texas San Antonio School of 17 
Medicine; San Antonio, Texas, USA 18 
5Department of Pathology, Immunology and Laboratory Medicine, University of Florida College 19 
of Medicine; Gainesville, Florida, USA 20 
 21 
Footnotes: 22 
†These authors contributed equally to the work and share first authorship. 23 
*These authors are both corresponding authors. 24 
 25 
*Correspondence:  26 
Philip A. Efron, M.D. 27 
Department of Surgery, University of Florida College of Medicine 28 
Room 6116, Shands Hospital  29 
1600 SW Archer Road 30 
Gainesville, Florida 32610-0019 31 
ORCID: 0000-0002-3931-650X 32 
Phone: 352-265-0494 33 
FAX: 352-265-0676 34 
Email: philip.efron@surgery.ufl.edu 35 
 36 
Rhonda Bacher, Ph.D. 37 
Department of Biostatistics, University of Florida 38 
Gainesville, Florida 32610-0019 39 
Email: rbacher@ufl.edu 40 
 41 
Keywords: myeloid-derived suppressor cells, sepsis, transcriptomics, single-cell RNA 42 
sequencing, chronic critical illness 43 
 44 
Word count: 6869 45 
Figure and Table Count: 14  46 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 7, 2024. ; https://doi.org/10.1101/2024.01.05.24300902doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.01.05.24300902


2 
 

Abstract 47 
 48 
Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-49 
derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute 50 
inflammatory responses but can persist in patients who develop chronic critical illness. The 51 
origins and lineage of these MDSC subpopulations were previously assumed to be discrete and 52 
unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity. 53 
Using Cellular Indexing of Transcriptomes and Epitopes by Sequencing followed by 54 
transcriptomic analysis, we identify a unique lineage and differentiation pathway for MDSCs 55 
after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the 56 
heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical 57 
outcome. 58 

59 
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1 Introduction 60 
 61 
 Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host 62 
response to infection (1), with survivors experiencing either a rapid recovery or chronic critical 63 
illness (CCI) (2). The emergency myelopoietic response to sepsis is characterized by 64 
hematopoietic stem and progenitor cell (HSPC) expansion and preferential differentiation along 65 
myeloid pathways (3-7). We and others have previously demonstrated that sepsis induces an 66 
expansion of circulating myeloid-derived suppressor cells (MDSCs), and that both an increase in 67 
and persistence of specific MDSC subpopulations are seen in sepsis patients with poor clinical 68 
outcomes (4, 8, 9). 69 
 Three MDSC subpopulations are typically described based on cell surface expression, 70 
mechanisms of immune suppression, and inflammatory profiles: granulocytic (PMN-), 71 
monocytic (M-), and early (E-) MDSCs (10, 11). Although these MDSCs differ phenotypically, 72 
they are all capable of suppressing T-lymphocyte proliferation (4, 12). As research into the 73 
myeloid compartment during inflammation expands, the complexity of intermediate cell types is 74 
just beginning to be understood. Indeed, Hegde et al. recently concluded that suppressive 75 
myeloid cell types, including MDSCs, “are highly heterogeneous and context dependent” (13). 76 
The authors presented an emergent view of MDSCs that emphasizes heterogeneity and plasticity 77 
in contrast to the classical view of MDSCs as the midpoint in a differentiation pathway that 78 
results in terminally-differentiated monocytes and granulocytes (13). 79 
 Single-cell RNA-sequencing (scRNA-seq) details the transcriptomes of complex and 80 
heterogeneous cell mixtures. An extension of this technique, Cellular Indexing of 81 
Transcriptomes and Epitopes by Sequencing (CITE-seq), simultaneously profiles cell surface 82 
proteins for each cell. We initially performed CITE-seq in order to identify MDSC 83 
subpopulations based on cell surface makers/cell phenotypes, as our previous results (14) 84 
indicated that MDSCs from septic patients may not express some of the classic genes found in 85 
MDSCs from cancer patients, making them difficult to identify. We compared the transcriptomes 86 
of myeloid cells from healthy subjects, acutely septic patients, and patients with good and poor 87 
clinical outcomes at later time points after sepsis. We found that MDSC subpopulations evolve 88 
over time and that outcome-dependent MDSC subpopulations exist. Specifically, we identified a 89 
novel hybrid (H)-MDSC phenotype unique to some sepsis survivors with poor clinical outcomes 90 
as well as acutely septic patients that progressed to CCI. Additionally, our findings suggest that 91 
the proliferation and cytokine production of lymphocytes, when co-cultured with MDSCs, vary 92 
at different time points after sepsis. Importantly, MDSCs do not express key genes seen in cancer 93 
whose downstream products suppress T-cell responsiveness. Overall, our results demonstrate a 94 
critical need for disease- or “context-” specific understanding of MDSCs when considering host-95 
specific immune dysfunction and potential therapies. 96 
 97 
2 Materials and Methods 98 
 99 
2.1 Study Design 100 
 101 
 Our study design was previously reported by Darden, et al (14). To summarize, this 102 
prospective, observational cohort study was registered with clinicaltrials.gov (NCT02276417) 103 
and conducted at a tertiary care, academic research hospital. The objective of the study was to 104 
better understand the myeloid response (specifically blood MDSCs) to acute sepsis, and to 105 
identify transcriptomic differences in sepsis patients who rapidly recover versus those who 106 
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develop CCI. Our hypothesis was that differences in the myeloid transcriptomic landscape could 107 
explain why some sepsis patients rapidly recover while others develop CCI. 108 
 Sepsis designation occurred through an electronic medical record-based Modified Early 109 
Warning Signs-Sepsis Recognition System (MEWS-SRS), which uses white blood cell count, 110 
heart rate, respiration rate, blood pressure, and mental status to identify patients at-risk for sepsis. 111 
All patients with sepsis were treated with early goal-directed fluid administration, initiation of 112 
broad-spectrum antibiotics, and vasopressor administration if appropriate. Antibiotic treatment 113 
was tailored to culture results and antibiotic resistance information. 114 
 Inclusion criteria: 115 
  Admission to the intensive care unit (ICU) 116 
  Age >17 years 117 

Diagnosis of sepsis or septic shock according to the 2016 SCM/ESICM 118 
International Sepsis Definitions Conference (1) 119 

  Initial septic episode while hospitalized 120 
  Management of patient via the sepsis clinical management protocol (15) 121 
 Exclusion criteria: 122 
  Refractory shock 123 
  Inability to achieve source control 124 
  Pre-sepsis expected lifespan <3 months 125 
  Expected withdrawal of care 126 
  Severe congestive heart failure (NYHA Class IV) 127 
  Child-Pugh Class C liver disease or undergoing evaluation for liver 128 
  transplant 129 
  HIV infection with CD4+ count <200 cells/mm3 130 
  Prior organ transplant, use of chronic steroids, or immunosuppressive 131 
  agents 132 
  Pregnancy 133 
  Institutionalized or other vulnerable patients 134 
  Chemotherapy or radiotherapy treatment within 30 days of sepsis onset 135 
  Severe traumatic brain injury (defined by radiologic evidence and GCS <8) 136 
  Spinal cord injury with permanent deficits 137 
  Unable to obtain informed consent 138 
 CCI was defined as ICU length of stay >13 days with persistent organ dysfunction as 139 
measured by the Sequential Organ Failure Assessment (SOFA) Score. Patients were also 140 
designated CCI with <14 days ICU length of stay if they were transferred to another hospital, or 141 
discharged to a long-term acute care facility or hospice with evidence of persistent organ 142 
dysfunction (4, 16). Patients were excluded from analysis if they died within 14 days of onset of 143 
sepsis (4, 16). 144 
 145 
2.2 Human blood collection and sample preparation 146 
 147 
 Whole blood samples were collected at the following time points: 4 ± 1 days and 14-21 148 
days after sepsis (16). For the former, we enrolled four patients diagnosed with septic shock (1) 149 
in order to guarantee a strong host response and transcriptomic alterations in circulating 150 
leukocytes. Interestingly, only half of these septic shock patients went on to develop CCI; the 151 
mortality for this cohort was 50% (17, 18). Samples from five patients who developed CCI and 152 
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four patients who rapidly recovered after sepsis were obtained from additional patients between 153 
days 14-21 after sepsis diagnosis. We previously determined this time point to be key to MDSC 154 
differentiation as well as distinguishing CCI from rapid recovery (4, 16). In addition, whole 155 
blood was collected from 12 healthy subjects (1, 2). The proportion of men and women did not 156 
differ between sepsis patients and healthy subjects. Healthy subjects trended towards being 157 
younger than sepsis patients, although they still met the criteria of middle age (>45 years), 158 
encompassing patients who have poor outcomes after sepsis compared to younger cohorts (17, 159 
18). Healthy subjects and septic patients had similar comorbidity scores, and similar underlying 160 
comorbidities (most commonly hypertension, chronic obstructive pulmonary disease, and 161 
diabetes mellitus). 162 
 Each blood collection underwent two enrichment procedures. PBMCs were collected 163 
from half of each sample using Ficoll-PaqueTM PLUS (Millipore Sigma, St. Louis, MO) and 164 
density gradient centrifugation. Myeloid cells were collected using RosetteSepTM HLA Myeloid 165 
Cell Enrichment Kit (STEMCELL Technologies, Vancouver). A 1:3 mixture of enriched 166 
PBMCs: myeloid cells was created in order to adequately analyze the small target population 167 
(MDSCs, especially in control subjects) while also allowing for characterization of other 168 
important immune cell populations using CITE-seq. 169 
 170 
2.2.1 Human T-cell isolation and proliferation assay 171 
 172 

Total T cells in the PBMC suspension were captured by immunomagnetic negative 173 
selection using EasySepTM Human T Cell Isolation Kit (STEMCELL Technologies, Vancouver) 174 
according to the manufacturer’s instructions. Isolated CD3+ lymphocytes were labeled with cell 175 
trace violet (Thermo Fisher, Waltham, MA) to assess T-cell proliferation. T lymphocytes (1 x 176 
105 CD3+) were seeded into a 96-well plate and stimulated with soluble anti-CD3/CD28 177 
antibodies (STEMCELL Technologies, Vancouver) or without, which served as the control. 178 
CD66b+ cells were also isolated from the PBMC fractions using EasySepTM positive selection kit 179 
(STEMCELL Technologies, Vancouver) and were co-cultured with stimulated T cells in a 1:1 180 
ratio at 37°C and 5% CO2. After 4 days, cells were harvested and supernatants were obtained for 181 
cytokine analysis. Cells were stained with anti-CD8 FITC and anti-CD4 PE and analyzed via 182 
flow cytometry (ZE5 Cell Analyzer, Bio-Rad Laboratories, CA). Proliferation indices were 183 
calculated as the total number of cell divisions divided by the number of cells that went into 184 
division (considering cells that underwent at least one division). 185 
 186 
2.2.2 Cytokine analysis 187 
 188 
 Human high sensitivity T cell magnetic bead 6-plex panels (IFN-γ, IL-10, IL-12 (p70), 189 
IL-17α, IL-2, IL-23) were purchased from EMD Millipore (Billerica, MA). Supernatants after 190 
cell culture were used for T cell-associated cytokines. The xPONENT software (EMD Millipore, 191 
Billerica, MA) was used for cytokine analysis. 192 
 193 
2.2.3 Flow cytometry 194 
 195 

PBMC samples were analyzed fresh (not frozen and rethawed) due to differential 196 
viability of cell populations, particularly granulocytes.(19, 20) Although the PBMC fraction 197 
excludes mature granulocytes, it does contain low-density granulocytes that are presumed to 198 
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include PMN-MDSCs (21). Classically, human blood MDSCs are defined from PBMCs as: M-199 
MDSCs (CD11b+CD14+CD33+HLA-DRlow/-) and PMN-MDSCs (CD11b+CD15+HLA-200 
DRlowCD66b+) (22). Our preliminary flow cytometric analysis revealed that CD15 was not a 201 
good cell surface marker to isolate CD14- cells from PBMCs (Fig. S1C). In fact, the analysis of 202 
CD33+CD11b+HLA-DRlow/- cells revealed heterogeneity in CD14 and CD15 cell surface 203 
expression. Thus, we chose to isolate CD66b+ cells from PBMCs to obtain PMN-MDSCs (Fig. 204 
S1C). 205 
 206 
2.3 Statistics 207 
 208 
2.3.1 scRNA-seq read preprocessing 209 
 210 

Gene expression and feature-barcoding data were generated using 10x Genomics v1.1 5’ 211 
chemistry and were sequenced on an Illumina HiSeq® with a target of 10,000 cells per sample 212 
(23). The Cell Ranger (10X Genomics) software suite was used to process base calls into 213 
FASTQ files, which were checked for quality control aberrations using FastQC v0.11.7 (24). A 214 
spliced + intronic, or 6plice, reference transcriptome was generated from the hg38 reference 215 
genome (25). Reads were pseudoaligned to the reference transcriptome with alevin-fry v 0.8.1; 216 
USA mode was used for gene expression reads in order to provide separate quantifications of 217 
spliced, unspliced, and ambiguous mRNA abundance (26-28). The counts of 11 cell surface 218 
proteins of interest were also quantified using alevin-fry. Splicing-aware gene expression 219 
quantification was performed using Ensembl transcript IDs, with final counts matrices 220 
aggregated using Ensembl gene IDs. 221 
 222 
2.3.2 scRNA-seq data processing 223 
 224 

Downstream data processing and analysis were performed primarily in R v4.2.3, with 225 
some additional processes written in Python v3.8 as required (29, 30). After loading the 226 
unfiltered spliced, unspliced, and ambiguous mRNA counts into R using fishpond package 227 
v2.4.1, we defined total mRNA counts as the elementwise sum of all three counts matrices and 228 
added the ambiguous counts to the spliced counts matrix (31). Unless otherwise specified, total 229 
mRNA counts were used as input throughout the analysis. Empty droplets and ambient mRNA 230 
were then identified and filtered out using the DropletUtils package v1.18.1 (32, 33). Cells with 231 
an estimated false discovery rate of <0.01 were kept for each sample. Next, the percentage of 232 
spliced reads coming from mitochondrial genes was computed for each cell, and cells with less 233 
than 5% mitochondrial DNA were kept (no significant difference between healthy and septic 234 
samples). Cell surface protein counts were imported as well, and cells that had valid gene 235 
expression barcodes but not protein barcodes were assigned a value of “0” for each protein. The 236 
raw counts matrices were then formatted and merged using the Seurat package v4.3.0, providing 237 
a single object with total, unspliced, and spliced mRNA as well as cell surface protein assays 238 
(34). Cells with less than three spliced and unspliced transcripts were removed by filtering; thus, 239 
the final merged dataset comprised 28,952 genes and 119,062 cells. 240 

The total mRNA counts were scaled by library size factors and log1p-normalized, while 241 
protein counts were normalized via a centered log ratio transformation across each gene. Four 242 
thousand highly variable genes (HVGs) were identified using a local polynomial regression 243 
between the log of expression variance and the log of mean expression as implemented in the 244 
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FindVariableFeatures function. After scaling the normalized counts, 100 principal components 245 
were computed using the set of HVGs as input, and each cell was scored and assigned a cell 246 
cycle phase as described previously (35). Next, the 25 different samples were integrated by the 247 
Harmony package v0.1.1, which corrects the existing Principal Component Analysis (PCA) 248 
embedding (36). The first 50 principle components were used as input, and a two-dimensional 249 
UMAP embedding was computed using the cosine distance on the resulting 50 Harmony 250 
components (37). Lastly, an approximate shared nearest neighbors graph was computed on the 251 
first 50 Harmony components using the cosine distance with the number of nearest neighbors set 252 
to 100, and the resulting graph was partitioned into clusters via Louvain modularity optimization 253 
using a resolution of 0.1 (38). 254 
 255 
2.3.3 scRNA-seq annotation 256 

 257 
After clustering, the SingleR package v2.0.0 was used with several different immune 258 

reference datasets with known labels to assign a most-likely broad cell type to each cluster (39-259 
44). In addition, the Azimuth package was used to map reference labels from an annotated 260 
dataset of healthy human PBMCs to each cell at multiple levels of granularity (34). Lastly, 261 
between-cluster differential expression testing was performed using the Wilcoxon rank-sum test 262 
with p-values adjusted via the Bonferroni correction. Genes were considered for testing if they 263 
were expressed by at least 25% of the cells in the cluster being tested, and results were retained if 264 
the mean log2 fold-change was greater than 0.25 and the adjusted p-value was less than 0.05 (45, 265 
46). After a comparison of the resulting differentially expressed gene sets (DEGs) with canonical 266 
marker genes from the literature and an investigation of the unsupervised annotations, a broad 267 
cell type identity was manually assigned to each cluster. 268 

After subsetting the initial dataset to just the cluster labeled as monocytes, cells with 269 
confident T-cell labels from Azimuth were filtered out and the data were split into two groups 270 
based on whether the cells came from healthy subjects or septic patients. Subcluster analysis was 271 
performed on the monocytes from the healthy subjects and septic patients. Briefly, the data were 272 
reprocessed and reintegrated as described before, though the number of HVGs was lowered to 273 
3,000 and only 30 principal components were used as input to the integration, nonlinear 274 
dimension reduction, and clustering routines. In addition, the number of estimated nearest 275 
neighbors was reduced based on the smaller sizes of the subsets. Any further subclustering of 276 
heterogeneous cell types was performed using the same methods. Differential expression testing 277 
was again used to identify potential marker gene sets, and a fine cell type label was manually 278 
assigned to each cluster. Lastly, the cell type labels were subjected to confirmatory analysis 279 
using the available cell surface protein data as needed. 280 
 281 
2.3.4 scRNA-seq differential expression 282 
 283 
 Differential expression testing between for each time point versus healthy subjects in the 284 
“classically” annotated MDSCs was performed using a pseudobulk approach. Counts across all 285 
cells for each patient were aggregated and summed, then the DESeq2 method was applied for 286 
differential testing using the muscat R package v1.14.0 (47). The cell-type specific marker gene 287 
expression testing on the MDSCs annotated using the “emergent” view was performed using the 288 
FindAllMarkers function in Seurat using the wilcox method.  289 
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Differentially expressed testing between sepsis groups was performed using linear mixed 290 
models. Each gene was tested between comparison groups for M-MDSCs, as they were the only 291 
population of MDSCs with a sufficient number of cells (n > 50) per group. Normalized 292 
expression was used as the response, with a binary indicator for sepsis group as the sole fixed 293 
effect. A random intercept was included for each sample, and models were fit via the maximum 294 
likelihood estimation using the MixedModels.jl Julia package (48, 49). After recording 295 
expression statistics such as mean expression per group, raw fold change, and log2 fold change, 296 
the p-value of the group difference fixed effect from the linear mixed model was used to 297 
determine the significance of differential expression after adjustment using the Holm correction 298 
(38, 50). 299 

 300 
2.3.5 Enrichment of genes with high transcriptional activity in MDSCs 301 
 302 

The unspliced ratio per gene per cell was calculated as (unspliced counts + 1) divided by 303 
the (spliced counts + 1), then the mean for each gene was calculated separately for the MDSC 304 
subpopulations. Genes having a mean ratio greater than 1.1 were considered as having a high 305 
degree of active transcription. The gprofiler2 R package v0.2.1 (51) was used to identify 306 
significantly enriched biological processes for each set of genes, then a network-based approach 307 
was performed to better understand the biological functions using the vissE R package v1.8.0 308 
(52). Similarities among the enriched processes were computed using the Jaccard index and then 309 
used to build an overlap network. Clusters of enriched gene-sets were identified by graph 310 
clustering; for each cluster a frequency analysis of words in the gene-set names indicates the 311 
most relevant biological functions. 312 

 313 
2.3.6 scRNA-seq trajectory inference and RNA velocity 314 
 315 
 After annotating the septic monocytic cells, the data were further subject to only include 316 
the cell types thought to be relevant to MDSC development and differentiation: classical and 317 
non-classical monocytes, cDCs, and MDSCs. This subset was re-embedded using UMAP, and 318 
the cells were reclustered using the re-computed simulated neural network graph as input to the 319 
Louvain algorithm (37). After extracting the UMAP parameters from the output of the 320 
RunUMAP function, we used the uwot R package to regenerate the fitted UMAP model and 321 
nearest neighbor data that were generated internally (53). From this output we extracted the 322 
UMAP connectivity graph, which is a sparse representation of the fuzzy simplicial data set that 323 
can be loosely interpreted as a metric of how likely connections are between cells (37). The raw 324 
counts matrices, metadata for cells and genes, nearest neighbor graphs, PCA, Harmony, and 325 
UMAP embeddings, and the UMAP connectivity graph were used to generate an AnnData 326 
object in Python that exactly matched the preprocessing used when annotating the cells in R (54). 327 
 The preprocessed data were used as input to an RNA velocity estimation workflow built 328 
around the scVelo package v0.2.5. After computing first-order moments of the spliced and 329 
unspliced counts, the dynamical velocity model was used to estimate per-gene velocities and a 330 
cell-level velocity graph, after which the velocities were projected onto the existing UMAP 331 
embedding (55, 56). Next, transition probability matrices, absorption probabilities, and initial 332 
and terminal cell state likelihoods were estimated based on a weighted kernel of the velocity 333 
estimates and UMAP connectivities using the CellRank package v1.5.1 (57). The resulting cell 334 
fate probabilities then served as a prior for the estimation of a gene-shared latent time for each 335 
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cell. Lineage driving genes were identified by estimating the Spearman correlation of each 336 
gene’s expression with absorption probabilities for each identified cell fate. Finally, a directed 337 
partitioned graph abstraction was estimated and projected into the existing UMAP embedding 338 
using the state probability and latent time estimates as priors; these computations were 339 
performed using the partition-based graph abstraction (PAGA) algorithm as implemented in 340 
v1.9.3 of the Scanpy package (58, 59). In addition, an undirected graph abstraction was used as 341 
the initialization for a force-directed graph embedding of the cells, after which the graph 342 
abstraction was recomputed on the resulting embedding. This layout of the cells was used to 343 
display inter-cell type connectivities, which were estimated as described previously using UMAP 344 
(60, 61). 345 
 Differences in the dynamical model parameters (state probabilities, velocity length and 346 
pseudotime, cell stability index, and lineage priming) were tested between septic groups within 347 
MDSC subpopulations using a linear mixed model. Specifically, the nlme R package v3.1-162 348 
(62) was used to fit a model with fixed effects of cell type, group, and their interaction, and a 349 
random intercept for subject. Pairwise testing was then obtained using contrasts of interest 350 
(across groups within cell type) with the emmeans R package v1.8.7 (63). 351 
 352 
3. Results 353 
 354 
3.1 MDSC subpopulations initially defined by classical cell surface markers 355 
 356 

Here we have used CITE-seq to analyze single-cell transcriptomic profiles of MDSCs in 357 
blood from healthy subjects (n=12) and surgical sepsis patients at 4 ± 1 (n=4) and 14-21 (n=9) 358 
days after sepsis onset (64). Septic patients at 14-21 days were further divided based on their 359 
clinical outcomes at time of sampling, defined as either ‘rapid recovery’ (n=4) or development of 360 
CCI (n=5). CCI was defined as sepsis survivors requiring 14 or more days of ICU care with 361 
persistent organ injury. Sex, age, BMI, and comorbidity profiles were similar between cohorts 362 
(Table 1). 363 
 Similar to flow cytometry phenotyping, CITE-seq employs conventional cell surface 364 
markers for myeloid cell subpopulations to define E-MDSCs (Lin−HLADRlow/− 365 
CD33+CD11b+CD14−CD15−CD66b−), PMN-MDSCs  (Lin−CD33+CD11b+CD14− and CD15+ or 366 
CD66b+), and M-MDSCs (Lin−HLADRlow/−CD33+CD11b+CD14+CD15−CD66b−), as well as 367 
CD14+CD16− (classical) and CD14dimCD16+ (non-classical) monocytes (while removing 368 
platelets, erythrocytes, HSPCs, γδ T cells, and innate lymphoid cells). This is consistent with the 369 
classical monolithic view of myeloid differentiation described by Hegde (Fig. 1A) (13). 370 
Historically, flow cytometry classification of MDSCs is performed directly on isolated PBMCs 371 
(4, 16), and our analysis revealed that PMN-MDSCs made up the majority of MDSCs in isolated 372 
PBMCs of representative septic patients, consistent with prior literature (Table 2) (4, 16). 373 
 We then evaluated cell proportions using transcriptomics with confirmation via flow 374 
cytometry. Myeloid cell enrichment was necessary in this step in order to detect MDSCs in 375 
healthy subject samples during CITE-seq as they are a relatively rare population (see Methods 376 
Section entitled “Human Blood Collection and Sample Preparation”). Both single-cell 377 
transcriptomics and flow cytometry revealed an overall increase in total MDSCs acutely after 378 
sepsis (Fig. 1B and Table 3). We plotted the cells via Uniform Manifold Approximation and 379 
Projection (UMAP) based on timepoint after sepsis (Fig. 1C) and myeloid cell subtype (Fig. 380 
1D), which revealed heterogeneity of these cells when analyzing their single cell transcriptomes. 381 
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The classification of MDSCs based on cell surface phenotypes is somewhat dependent on the 382 
method of analysis, and as the myeloid enrichment kit (STEMCELL) uses CD33 (and CD33 is 383 
expressed on all MDSCs), this was our first inclination that an alternative method of classifying 384 
cells by subpopulation would be necessary. 385 

Next, we performed pseudobulk differential gene expression between septic patients at 386 
day 4 and days 14-21 post-sepsis diagnosis compared to healthy subjects to assess possible 387 
differences among septic groups. Dramatic differences in gene expression within MDSC 388 
subpopulations (specifically PMN- and M-MDSCs, which were most abundant) were observed 389 
that varied over time (Fig. 2). Considering PMN-MDSCs, by comparing each differential 390 
expression test performed against healthy subjects, we found more extreme fold-changes in late 391 
sepsis patients who developed CCI compared to acutely septic patients (Fig. 2A, left panel). 392 
Conversely, gene expression for late sepsis patients who rapidly recovered returned towards that 393 
seen in healthy subjects when compared to both acute sepsis and late sepsis with CCI. Gene 394 
expression for rapid recovery and CCI patients compared to healthy subjects also tended to 395 
diverge (Fig. 2A, middle and right panels). Overall, 52 genes were differentially expressed in 396 
PMN-MDSCs from acutely septic patients; however, only three of these genes were also 397 
significantly differentially expressed in both late sepsis patients who either rapidly recovered or 398 
developed CCI (Fig. 2B; Supplemental File 1). The ontology of transcriptional differences 399 
among septic patients at different time points also illustrated the heterogeneity of the PMN-400 
MDSC response over time (Fig. 2C). 401 

The greatest differences in the magnitude of M-MDSC gene expression from healthy 402 
subjects compared to septic patients occurred during acute sepsis (day 4) (Fig. 2D). In this 403 
cohort, 601 genes were differentially expressed in M-MDSCs, and only 31 of these were also 404 
significantly differentially expressed in late sepsis patients who either rapidly recovered or 405 
developed CCI at days 14-21 (Fig. 2E). Gene ontology analysis among M-MDSCs revealed that 406 
patients experiencing rapid recovery had over-expression of kinase agents versus oxoacid 407 
metabolism when compared to sepsis patients with CCI (Fig. 2F). 408 

In summary, transcriptomic analysis comparing healthy subjects, patients day 4 post-409 
sepsis, and patients at days 14-21 post-sepsis (combining those who rapidly recovered with those 410 
who developed CCI) revealed significant heterogeneity in MDSC transcriptomics. In addition, 411 
lymphocyte suppressive activity, specifically suppression of T cell proliferation and T cell 412 
cytokine/chemokine production, varied between cohorts (see below). MDSCs from both time 413 
points after sepsis were dissimilar when comparing their gene expression profiles and 414 
significantly enriched biological processes from gene ontology. 415 

 416 
3.2 Verifying the immunosuppressive capacity of MDSCs present in sepsis 417 
 418 

Our laboratory has previously used cell sorting and subsequent T-cell suppression assays 419 
to demonstrate the immunosuppressive capacity of total MDSCs from septic patients (4, 16). 420 
Thus, we set out to verify that functionally active PMN- and M-MDSCs were indeed present in 421 
the isolated peripheral blood mononuclear cells (PBMCs) of septic individuals, as defined by 422 
Gabrilovich, et al (65). Surprisingly, we discovered unexpected cell types in our flow cytometry 423 
samples that were supported by single-cell analysis. Historically in the cancer literature, CD15 424 
positivity is used to distinguish PMN-MDSCs from M-MDSCs (13). However, in representative 425 
septic patients, after identifying CD11b+CD33+ cells (Fig. S1A) and isolating HLA-DR-/low cells 426 
to obtain the total MDSC population (Fig. S1B), CD15 was unable to clearly separate MDSC 427 
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subpopulations (Fig. S1C, bottom panel). Alternatively, CD66b (CEACAM8; a granulocytic 428 
marker) was able to better delineate MDSC subpopulations (Fig. S1C, top panel) and, thus, was 429 
selected to distinguish PMN-MDSCs from PBMCs for functional analysis (Fig. S1D) (19, 20, 430 
65-67). We undertook bulk CD66b+ cell isolation (STEMCELL Technologies, Vancouver); 431 
however, although CD14-CD15+ PMN-MDSCs enrichment was achieved, further analysis of the 432 
CD66b+-isolated cells demonstrated distinct CD66blow and CD66bhigh populations (Fig. S2A). 433 
Thus, we had enriched CD66blowCD14+CD15- M-MDSCs in our gating strategy which was 434 
meant to only contain PMN-MDSCs (CD66bhigh) (Fig. S2B). 435 

Functionally, the CD66b+ cells isolated from septic patient PBMCs suppressed either 436 
CD4+/CD8+ T-lymphocyte cytokine/chemokine production (Fig. S3) or lymphocyte proliferation 437 
of host CD8+ T-lymphocytes (Fig. S4), thereby meeting the criteria of MDSCs. CD66b+ MDSCs 438 
from septic but not healthy subjects altered T-cell cytokine production in response to 439 
antiCD3/CD28 treatment, including IFN-γ, IL-2, IL-4, IL-10, and IL-17 (Fig. S3). Cytokines 440 
which were analyzed which did not exhibit CD66b+ inhibition in acutely septic patients include 441 
IL-12, IL-23, and TGF-β. Only CD66b+ cells isolated from sepsis patients 14-21 days after 442 
infection were capable of significantly suppressing CD8+ T-lymphocyte proliferation in response 443 
to CD3/CD28 stimulation (Fig. S4). Although we did not see suppression of CD4+ T-lymphocyte 444 
proliferation by CD66b+ cells in response to CD3/CD28 stimulation, we did see a significant 445 
decrease in CD4+ T-lymphocyte proliferation stimulated in culture at days 14-21 compared to 446 
day 4 (Fig. S5). This indicates that CD4+ T lymphocytes are incapable of appropriate 447 
proliferation 2-3 weeks after sepsis (similar to what has been previously reported) (68), and that 448 
MDSCs at this time point may not be able to further suppress this aspect of CD4+ T lymphocyte 449 
function (22, 68). 450 
 451 
3.3 Emergent view of MDSCs and transcriptomic analysis of a novel MDSC 452 
subpopulation 453 
 454 
 After our initial steps demonstrated that identification of MDSC subsets based on cell 455 
surface markers was potentially problematic in sepsis, we transitioned to cell classification via 456 
gene expression for the remainder of our analysis. All cells were clustered based on their 457 
transcriptomic profiles (visualized via UMAP (Fig. 3A) with relative percentages of each cell 458 
type depicted in Fig. 3B). The broad cell types were compared via expression of cell-surface 459 
marker genes (Fig. 3C) as well as percentage of spliced mRNA between patient groups (Fig. 460 
3D). This was followed by careful manual annotation and inspection of canonical marker genes 461 
with identification of myeloid cells via differential expression of genes (Fig. 4). As explained by 462 
Hegde, et al. (13), there is substantial plasticity within MDSC subpopulations during sepsis 463 
which informs the relationship between MDSCs and terminally differentiated effector cells (Fig. 464 
5A). Additional marker genes were used to obtain fine-level annotation of myeloid cell types 465 
(Fig. 5B). Importantly, four distinct populations of MDSCs were identified via this approach 466 
(Fig. 5C), three of which were consistent with classically defined E-, PMN-, and M-MDSCs 467 
(65). A novel fourth population was identified in 60% of the late sepsis patients who developed 468 
CCI, as well as both of the acutely septic patients who progressed to CCI (Table 4, Fig. 6A). 469 
This MDSC subpopulation exhibited gene expression patterns that were partially consistent with 470 
both M- and PMN-MDSCs. We thus labeled these cells "hybrid” (H)-MDSCs. Although one of 471 
the patients with CCI had a much greater number of H-MDSCs than other patients, it should be 472 
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noted no H-MDSCs were observed in late sepsis patients who had rapidly recovered, or acutely 473 
septic patients who progressed to rapid recovery (Table 4). 474 

The majority of MDSC-specific genes in septic patients were shared by at least two of the 475 
four subpopulations (66%, n=270 genes), with 36% (n=147 genes) significantly expressed by all 476 
four (Fig. 6B, Supplemental File 2). Although the MDSC subpopulations were fairly similar in 477 
terms of overlapping genetic expression, we identified seven genes uniquely expressed by H-478 
MDSCs: RGDP5, TBL1X, MBNL1, SERF2, ATP5F1E, MT-ND1, and MT-ATP6 (Fig. 6C). Gene 479 
expression was downregulated in RANBP2-like and GRIP domain-containing protein 5 480 
(RGDP5), transducin (beta)-like 1X-linked (TBL1X), and muscleblind-like splicing regulator 1 481 
(MBNL1) (69, 70). TBL1X regulates transcriptomic pathways and is upregulated in malignancy 482 
(69). MBNL1 regulates alternative splicing and can be up- or downregulated depending on the 483 
type of cancer (71). Genes with upregulated expression included small EDRK-rich factor 2 484 
(SERF2), ATP synthase F1 subunit epsilon (ATP5F1E), NADH-ubiquinone oxidoreductase 485 
chain 1 (MT-ND1), and mitochondrially encoded ATP synthase membrane subunit 6 (MT-486 
ATP6). The latter three genes encode proteins involved in mitochondrial metabolism and 487 
function (72). 488 

We next sought to identify differential genetic expression between our septic cohorts, 489 
specifically looking at differences between MDSCs in late sepsis patients who rapidly recovered 490 
and those who developed CCI. For differential expression across sepsis groups, only M-MDSCs 491 
were sufficiently present per group for fitting a linear mixed model with multiple subjects, as 492 
MDSCs are a relatively rare population overall. We identified four differentially expressed genes 493 
in M-MSDCs using this method: CD163, IER2, CTSZ, and SNX3 (Fig. 6D). Expression of 494 
CD163 (73), a gene responsible for controlling inflammation, was significantly lower in M-495 
MDSCs in late sepsis patients with CCI versus acutely septic patients. SNX3 has been identified 496 
as a potential septic biomarker (74), and was significantly upregulated in patients with CCI 497 
compared to acutely septic patients. IER2 was significantly higher expressed in late sepsis 498 
patients who rapidly recovered compared to acutely septic patients. IER2 is known to be 499 
upregulated in response to external stimuli including infection (75, 76). CTSZ expression was 500 
significantly higher in patients with CCI compared to patients who rapidly recovered after sepsis, 501 
and has been previously identified as a septic marker in mice (77). 502 

The plasticity of the H-MDSC subpopulation is evident in the increased per-cell 503 
proportion of unspliced mRNA, indicating more active transcription. Only E-MDSCs had a 504 
higher proportion of unspliced mRNA in the myeloid compartment (Fig. 7A). To examine 505 
factors driving cellular activities, we identified genes with a high average proportion of unspliced 506 
mRNA within each cell subpopulation and performed enrichment analysis to identify relevant 507 
biological processes. Rather than focusing on individual ontologies, we used a network-based 508 
approach to cluster similar significantly enriched biological functions for each MDSC 509 
subpopulation (Fig. 7B-E) (52). Not surprisingly, actively transcribed genes in all MDSC 510 
subpopulations were enriched for activities pertaining to ‘immune activation.’ While PMN- and 511 
M-MDSCs had more biologically distinct functions, H-MDSCs shared enrichment with both cell 512 
types, specifically pertaining to pathophysiological septic-related processes including 513 
‘organonitrogen’ and phosphorus-related processes.  514 

 515 
3.4 Determination of differentiation pathways and cell lineage in septic cohorts 516 
 517 
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Having described the MDSC subpopulations, we next set out to incorporate these 518 
findings into differentiation pathways of the myeloid compartment in septic patients. Quantifying 519 
transcriptional kinetics via RNA velocity estimation revealed complex, fluid relationships 520 
between MDSC phenotypes (Fig. 8A). As expected, M-MDSCs appeared to serve as the bridge 521 
between early immunosuppressive cell types and mature myeloid cells such as monocytes and 522 
conventional dendritic cells (cDCs) (Fig. 8B). As our analysis was based on PBMCs, it was not 523 
possible to compare the transition from MDSCs to mature granulocytes (PMNs). Estimating the 524 
graph connectivity between monocyte-lineage cell types allowed us to quantify the strength of 525 
each undirected relationship, and showed that MDSC subpopulations are both highly 526 
interconnected and much more internally similar to each other than they are to populations of 527 
terminally-differentiated myeloid cells (Figs. 8B-C). 528 

After analyzing velocity-inferred cell state transitions performed with CellRank, all E-, 529 
PMN-, and the vast majority of M-MDSCs cell states were classified as progenitor-like or 530 
transitioning-like (Fig. 8D). Only H-MDSCs contained a significant proportion of cells in a 531 
plasticity-like state with high probabilities for both initial and terminal cell states (in which cells 532 
remain H-MDSCs) (Fig. 8E) (57). Supporting this, significant variation was observed in the 533 
likelihood of an H-MDSC staying an H-MDSC when estimated by absorption probabilities from 534 
CellRank, with a mean (SD) probability of 0.33 (0.29) (Fig. 8F). No other cell types were likely 535 
to end up as H-MDSCs. To better characterize the biology underlying commitment to the H-536 
MDSC cell fate, lineage driver genes (genes significantly correlated with the probability of 537 
becoming an H-MDSC) were identified by computing Spearman correlations of expression with 538 
absorption probabilities. Highly correlated genes were diverse in function and included 539 
inflammation-associated genes such as S100A8, -9, and -12, along with immunoregulatory genes 540 
ALOX5A, RETN, and IL1R2. 541 

Next, we investigated differences in cell states across sepsis groups for each MDSC 542 
subpopulation. As H-MDSCs were not observed in sepsis patients who experienced rapid 543 
recovery, they were not included for this analysis. M-MDSCs were highly consistent between 544 
septic patients at day 4 and days 14-21 in terms of their cell states and kinetics (Fig. 9A). 545 
Interestingly, PMN-MDSCs displayed the most heterogeneity, specifically in late sepsis patients 546 
with CCI compared to both day 4 septic patients and late sepsis patients who rapidly recovered. 547 
PMN-MDSCs in late sepsis patients who developed CCI had significantly slower differentiation 548 
speed, higher cell state stability, and lower initial state probabilities (Fig. 9B). This is consistent 549 
with PMN-MDSCs persisting in CCI compared to patients who rapidly recover after sepsis. E-550 
MDSCs in late sepsis patients with CCI also showed significantly lower differentiation 551 
progression than acutely septic patients or late sepsis patients who rapidly recovered, along with 552 
a higher degree of cell commitment along the differentiation trajectory compared to acutely 553 
septic patients (Fig. 9C). 554 

As previously stated, CD66b+-isolated PBMCs met the criteria of MDSCs in their ability 555 
to suppress either T-lymphocyte cytokine/chemokine production or T-lymphocyte proliferation 556 
ex vivo (Figs. 5 & 6) (4, 16), although CD66b+-isolated PBMCs were not identical in their 557 
suppressive activity from acutely septic patients or late time periods after severe infection. 558 
Interestingly, whether using cell-surface markers or transcriptomic analysis of the current 559 
dataset, differential expression of several key MDSC genes published in the cancer literature did 560 
not reach significance and/or were modestly expressed in septic individuals (Fig. 10). For 561 
example, although there was upregulation of genes in the S100A and MMP superfamilies, 562 
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differential expression of ARG1, IL-10, NOS2, and TGFB1 did not reach significance (although 563 
transcripts from all genes were detected).  564 
 565 
4 Discussion 566 
 567 

Since their delineation by Gabrilovich in 2007 (78), MDSCs have been reported in 568 
multiple inflammatory diseases in addition to cancer (79). Recently, Hedge et al. described 569 
significant heterogeneity among these immune suppressive cells in the myeloid compartment 570 
(13). They stated that historically we have had a ‘monolithic view’ or definition of MDSCs, and 571 
that a more complex ‘emergent view’ is required to better understand these leukocytes (13). In 572 
this report, we have taken both conceptual approaches (monolithic and emergent) to analyze 573 
MDSCs in one of the first cohorts to compare patients with poor (CCI) versus good (rapid 574 
recovery) clinical outcomes after surgical sepsis. Importantly, all analyses revealed significant 575 
alterations in the evolution of MDSCs after sepsis (i.e. time points) as well as significant 576 
differences in the MDSC subpopulations taken from sepsis survivors who rapidly recovered or 577 
developed CCI. In classifying MDSCs via gene expression and transcriptomic analysis, we have 578 
also identified a novel MDSC subpopulation (H-MDSCs) present only in sepsis survivors with 579 
CCI and acutely septic patients who progressed to CCI. Finally, even though we have 580 
demonstrated in this work and previously (16) that these cells suppressed lymphocyte 581 
proliferation to antigenic stimulation (similar to oncologic processes), the MDSCs identified 582 
after sepsis do not significantly express many of the well-described genes key to MDSC 583 
immunosuppression in other pathologies, most commonly cancer (80). 584 

The study of MDSCs has expanded dramatically over the past decade. However, the 585 
overwhelming majority of these studies performed using blood samples are from cancer patients; 586 
only five studies focus on systemic infection and sepsis (8, 14, 81-83). Although MDSCs are 587 
commonly detected in different inflammatory pathologies, there is a gap in research regarding 588 
this cell type in the infected or post-infected host. Data are increasingly illustrating the impact of 589 
a dysregulated myeloid compartment in patients with poor long-term outcomes, including 590 
COVID-19 (84). MDSCs have been identified in these patients, especially those with more 591 
severe disease or poor outcomes (85, 86), and are being considered as a target for 592 
immunotherapy (87). 593 
 MDSCs are challenging to define and characterize. As such, cell surface markers and 594 
genes historically used to identify MDSC subpopulations were amassed from multiple different 595 
resources, predominantly from the cancer literature. Surface markers differ between humans and 596 
other species, so only human studies could be considered (88, 89). Based on previous work, we 597 
began by isolating CD66b+ PBMCs as a means to obtain PMN-MDSCs for functional analysis in 598 
septic patients and healthy subjects (10). Interestingly, although we found that the purity of the 599 
isolation of CD66b+ leukocytes (Fig. S1) was very good, and even though CD66b is considered a 600 
marker for granulocytes (90), we identified that the CD66b+ population consisted of a mixture of 601 
PMN- and M-MDSCs (Fig. S2). Although there can be populations of MDSCs that have 602 
different levels of both CD14 or CD15 cell surface expression (91), these positively isolated 603 
CD66b+ PBMCs were a combination of CD14+CD15-CD66blow (M-MDSC) and 604 
CD15+CD66bhigh (PMN-MDSC) cells. Our CITE-seq data confirmed that CEACAM8 expression 605 
was present in multiple myeloid cell populations. This variable MDSC cell surface expression of 606 
CD66b in septic patients appears similar to a cell type described in 1998 to define asynchronous 607 
myelopoiesis in malignant myeloid disorders (92). This highlights some of the difficulty 608 
regarding the use of cell surface phenotypes to classify MDSC subtypes after sepsis. 609 
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Of note, MDSCs are continuing to be described in certain patient populations, including 610 
sepsis, through cell surface markers only (93, 94). Although these data may be valid, our analysis 611 
would indicate that the traditional “monolithic” definition of MDSCs may not adequately define 612 
these plastic, transitory cell populations in critically ill patients with sepsis. Our results do not 613 
refute any currently accepted definitions of human MDSCs (including by cell marker phenotype) 614 
(10), but rather illustrate the complexity of the myelodysplasia that occurs after human sepsis, 615 
and the shortcomings of cell surface markers alone to identify myeloid cell types after severe 616 
infection. In addition, other immunosuppressive cells exist in the PBMCs of whole blood from 617 
septic human patients, specifically low-density PMNs and exhausted monocytes (95, 96). This 618 
work, and our current results, indicate an immediate compelling need for more refined and 619 
nuanced descriptions and definitions of the myeloid compartment after sepsis. 620 

Veglia et al. previously described transcriptomic differences between MDSCs and 621 
terminally differentiated monocytes and neutrophils (66). Additional guidelines for 622 
characterization and nomenclature of MDSCs based on cell surface phenotypes have been 623 
proposed, although the same central resource does not appear to exist for single-cell 624 
transcriptomic signatures of different MDSC subpopulations (65, 97). However, specific genes 625 
have been described in the literature. In cancer, STAT3 is important for the T-cell suppression 626 
exerted by MDSCs (98). STAT1, -5, and -6 are also important in the regulation of arginase 627 
activity, although this may be more pertinent for cancer than sepsis based on the subdued level of 628 
ARG1 expression in MDSCs identified from our septic patients (Fig. 10) (98). It should also be 629 
noted that different subpopulations than the canonical PMN- and M-MDSCs have been 630 
previously described, including Eo-MDSCs (with eosinophilic characteristics) and fibrocystic 631 
MDSCs (99, 100). 632 

A population of H-MDSCs was found when using the “emergent” classification system 633 
of MDSCs via genetic expression in order to classify cell types (Fig. 5C). All four MDSC 634 
subpopulations appeared strongly interrelated and our data indicated that these cells are likely 635 
plastic in their myeloid state after sepsis (Fig. 6B) (13). As to why we classified these cells as 636 
unique from previously defined MDSC subpopulations, H-MDSCs express many similar genes 637 
as PMN-MDSCs, although the average expression of these genes tends to be lower, such as with 638 
IL1R2, CST7 and MMP8/9. H-MDSCs also share substantial overlap with M-MDSCs, with 639 
higher expression in sepsis of genes like S100A8/9 and DNAH17 (Fig. 10). H-MDSCs may be an 640 
intermediary between MDSC subpopulations, and their presence in CCI further reveals the 641 
plasticity of myeloid differentiation in sepsis (Fig. 8). Although MDSC subpopulations share a 642 
similar phenotype after sepsis, their function and transcriptomic patterns are distinct. Thus, after 643 
sepsis, ‘a MDSC is not a MDSC,’ and there is a unique expression of myelodysplasia after severe 644 
infection depending on both host and outcome. These data support the concept that targeted 645 
therapeutic strategies will be required within these sepsis phenotypes given the heterogenic 646 
response of the myeloid compartment to sepsis. 647 
 This study was limited by the number of patients in each study arm; however, our sample 648 
size estimates were similar to past publications in the field (14, 101). This is also a single-649 
institution study in which treatment of sepsis is standardized but may differ compared to other 650 
institutions. Additionally, we did not stratify septic patients by septic source. Future directions 651 
include stratification of our patient cohorts by infection source and demographic information 652 
such as age, sex, and ethnicity/race to determine confounding factors which may have affected 653 
our analysis by different clinical outcomes after sepsis. 654 
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 In summary, we have determined that the post-septic myeloid compartment is complex 655 
and includes a unique MDSC subpopulation that has not been previously described. Importantly, 656 
the heterogeneous response of the blood myeloid compartment to sepsis varies based on time and 657 
clinical outcome (CCI vs rapid recovery) and demonstrates that cell surface markers may not be 658 
a reliable indicator of circulating myeloid cell types after sepsis. Sepsis, like many other 659 
pathologies, requires a precision/personalized medical approach in order to improve host 660 
outcomes (22). Our work reveals specific cell types and pathways that could be modified in 661 
patients at risk of poor outcomes after sepsis (CCI) to convert them to a phenotype of rapid 662 
recovery. 663 

664 
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6 Figure Legends 935 
 936 
Figure 1. Single-cell analysis of myeloid cells using surface protein makers. (A) Illustration 937 
representing the historical/classic/monolithic definition of MDSCs. E-, PMN-, and M-MDSCs 938 
are the predominant subpopulations with distinct phenotypes and functions (modified from 939 
Hegde et al. (13)). (B) Cell proportions of monocyte subtypes and MDSCs relative to overall 940 
monocytic cells are shown for healthy subjects (“Healthy”) (n=12), septic patients 4 days 941 
following diagnosis (“Day 4 ± 1”) (n=4), and septic patients at days 14-21 (separated into those 942 
experiencing chronic critical illness (“CCI”) (n=5) or those who rapidly recovered (“RAP”) 943 
(n=4)). (C) UMAP embedding of single-cell transcriptomes of peripheral blood mononuclear 944 
cells (PBMCs). Cells are colored by the timepoint at which the samples were taken. Samples 945 
from day 4 and days 14-21 are from septic patients. (D) Similar to (C), with cells colored by cell 946 
type. M: monocytic, PMN: granulocytic, E: early. 947 
 948 
Figure 2. Analysis via CITE-seq of differential gene expression of PMN- and M-MDSC 949 
subpopulations at different time points relative to healthy subjects. (A) Within PMN-950 
MDSCs, gene expression of twelve healthy subjects (baseline) was compared with septic patients 951 
at day 4 (“Day 4 ± 1”) (n=4) and septic patients at days 14-21 (subdivided into chronic critical 952 
illness (“CCI”) (n=5) and rapid recovery (“RAP”) (n=4)). Differential expression results relative 953 
to healthy subjects were compared for each pair of septic time points (left panel: day 4 vs CCI, 954 
middle panel: day 4 vs RAP, right panel: RAP vs CCI). The x-axis is the absolute difference in 955 
the p-value per gene (|Δ p-value|) and the y-axis is the difference in log fold-change (Δ  logFC). 956 
The colored points represent genes that were differentially expressed in a single group or for 957 
both groups (p-value < 0.01). (B) Venn diagram of genes with overlapping significant 958 
differential expression (p-value < 0.01). (C) Enrichment results of significant genes representing 959 
the gene ontology biological processes. The y-axis is the negative log (base 10) of the p-value (-960 
log10(pvalue)). (D-F) Similar to (A-C) for M-MDSCs. PMN: granulocytic, M: monocytic. 961 
 962 
Figure 3. UMAP embeddings of peripheral blood mononuclear cells (PBMCs). (A) Cells are 963 
colored by the time point at which the samples were taken. Samples from acutely septic patients 964 
(“Day 4±1”) and late sepsis patients who either developed chronic critical illness (“CCI”) or 965 
experienced rapid recovery (“RAP”). (B) Cells are colored by septic cohort. Late sepsis patients 966 
at day 14-21 are separated into two groups denoted “CCI” (chronic critical illness) and “RAP” 967 
(rapid recovery) based on their response to the sepsis. (C) Expression of surface markers on 968 
subtypes of PBMCs. (D) The left panel denotes percentages of spliced mRNA in different cell 969 
types separated by patient cohort. The right panel denotes overall unspliced mRNA across cell 970 
types by patient cohort. B: B cells, NK: natural killer cells, HSPC: hematopoietic stem and 971 
progenitor cells, pDC: plasmacytoid dendritic cells. 972 
 973 
Figure 4. Marker gene expression across myeloid cell types in septic patients. A dot plot 974 
shows scaled mean expression of the top seven most significant differentially expressed genes 975 
(DEGs) in each myeloid cell type prior to fine-level annotation for MDSC subpopulations. Point 976 
radius indicates the percentage of cells with nonzero expression, and color denotes relatively 977 
higher or lower mean expression across cell types. Testing was performed with the Wilcox test, 978 
and genes were ranked by adj. p-value after Bonferroni correction. CD14+: classical monocyte, 979 
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CD16+: non-classical monocyte, MK: megakaryocyte, cDC: conventional dendritic cells, infl.: 980 
inflammatory, M: monocytic, E: early, PMN: granulocytic. 981 
 982 
Figure 5. “Emergent” view and annotation of myeloid cell subpopulations in septic 983 
patients. (A) Illustration representing the “emergent” definition of MDSCs, incorporating the 984 
plasticity and heterogeneity of the myeloid compartment (modified from Hegde, et al (13)). (B) 985 
Fine cell type annotations within cells from septic patients that were broadly annotated as 986 
monocytes. The x-axis includes the different myeloid cell subtypes. The y-axis includes genes 987 
which were most highly expressed by each cell subtype. The scaled mean expression is denoted 988 
by the color of the dots, and the percentages of cells expressing the genes are represented by the 989 
size of the dots. (C) UMAP plots of cells of the four distinct subpopulations of MDSCs stratified 990 
by acutely septic patients (“Day 4±1”) (n=4), late sepsis patients who developed chronic critical 991 
illness (“CCI”) (n=5) or experienced rapid recovery (“RAP”) (n=4). This includes cells 992 
consistent with early (E-) MDSCs, granulocytic (PMN-) MDSCs, monocytic (M-) MDSCs, and a 993 
population of cells with characteristics of both M- and PMN-MDSCs, labeled hybrid (H-) 994 
MDSCs. MK: megakaryocyte, cDC: conventional dendritic cell, infl.: inflammatory. 995 
 996 
Figure 6. Characterizing data-driven subpopulations of MDSCs. (A) Relative frequencies of 997 
MDSCs by subpopulation. Percent of cells defined by transcriptomic analysis and gene 998 
expression, rather than cell surface markers. Grouped by acutely septic patients (“Day 4±1”) 999 
(n=4) and late sepsis patients who developed chronic critical illness (“CCI”) (n=5) or 1000 
experienced rapid recovery (“RAP”) (n=4). (B) Diagram of significant marker genes for each 1001 
MDSC subpopulation were determined in the pooled septic patients. (C) UMAP plots of all 1002 
MDSCs are shown for the seven genes that were unique markers of gene expression in the H-1003 
MDSC subpopulation compared to all other MDSCs. Scaled expression represented by heat map 1004 
of each gene. (D) Differential expression testing between septic groups in M-MDSCs revealed 1005 
four genes that were significant. Y-axis is log (expression +1). Asterisks represent p-value 1006 
cutoffs of 0.05 and 0.001, respectively, obtained from the mixed model analysis. M: monocytic, 1007 
PMN: granulocytic, E: early, H: hybrid. 1008 
 1009 
Figure 7. Larger proportions of unspliced mRNA in E- and H- MDSCs. (A) Distribution of 1010 
unspliced mRNA percent across myeloid cell types. (B-E) Gene-set enrichment analysis of genes 1011 
having high proportions of unspliced mRNA within each MDSC subpopulation. The left panel 1012 
shows the gene-set network and clustering of significantly enriched biological processes. The 1013 
right panels show word clouds for each biologically similar cluster (a general cluster of high-1014 
level biological processes was present for each cell-type and omitted). E: early, H: hybrid, M: 1015 
monocytic, PMN: granulocytic, CD16+: non-classical monocyte, CD14+: classical monocyte, 1016 
MK: megakaryocyte, cDC: conventional dendritic cell, infl.: inflammatory. 1017 
 1018 
Figure 8. Topology of myeloid differentiation and plasticity in septic patients. (A) Myeloid 1019 
cell smoothed RNA velocity estimates projected onto UMAP. Arrows represent differentiation 1020 
potential. (B) Undirected partition-based graph abstraction (PAGA) of myeloid cell types. Line 1021 
width/color between cell types denote relationship strength. Nodes colored by cell type. (C) 1022 
Arrow directions represent differentiation potential. Arrow widths denote strength of 1023 
connectivities between cell types. Arrow manually added indicating PMN-MDSC differentiation 1024 
into granulocytes. (D) Cell state probabilities shown together for M-, PMN-, and E-MDSCs with 1025 
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all other cells in gray. (E) Similar to (D) with H-MDSCs in red. (F) H-MDSC cell fate 1026 
absorption probabilities. cDC: conventional dendritic cell, infl.: inflammatory, CD16+: non-1027 
classical monocyte, CD14+: classical monocyte, M: monocytic, H: hybrid, PMN: granulocytic, 1028 
E: early. 1029 
 1030 
Figure 9. Differences in PMN-, E-, and M-MDSCs across septic time-points. (A) Cell 1031 
dynamic parameters estimated from CellRank were compared across cells from septic patients at 1032 
Day 4±1 (acute sepsis) (n=4), patients at day 14-21 who rapidly recovered (“RAP”) (n=4), and 1033 
patients at day 14-21 who developed chronic critical illness (“CCI”) (n=5) in M-MDSCs. (B-C) 1034 
Similar to (A) for PMN-MDSCs and E-MDSCs, respectively. Significant p-values (< 0.05) were 1035 
obtained from fitting a linear mixed model. E: early, PMN: granulocytic, H: hybrid, M: 1036 
monocytic. 1037 
 1038 
Figure 10. Canonical MDSC genes in immunosuppressive cell subpopulations in septic 1039 
patients. Heatmap of scaled expression of canonical genes identified in the current MDSC 1040 
literature. Cells in the four identified MDSC subpopulations are denoted in the colored key. 1041 
Genes were arranged using hierarchical clustering with complete linkage. Patient groups include 1042 
acutely septic patients (“Day 4±1”) (n=4) and late sepsis patients who developed chronic critical 1043 
illness (“CCI”) (n=5) or experienced rapid recovery (“RAP”) (n=4). M: monocytic, PMN: 1044 
granulocytic, E: early, H: hybrid. 1045 
 1046 
7 Tables 1047 
 1048 
Table 1. Patient characteristics between cohorts. Cohorts are healthy control patients, acutely 1049 
septic patients, and late sepsis patients who experienced rapid recovery (RAP) and chronic 1050 
critical illness (CCI). BMI: body mass index, CCI: Charlson comorbidity index, COPD: chronic 1051 
obstructive pulmonary disease, DM: diabetes mellitus, HTN: hypertension, NSTI: necrotizing 1052 
soft tissue infection, SBO:  small bowel obstruction, MCC: Motorcycle crash. 1053 
 1054 
 Healthy Subjects 

(n=12) 
Sepsis Day 4 ± 1 
(n=4) 

RAP Days 14-21 
(n=4) 

CCI Days 14-21 
(n=5) 

p-
value 

Male, # (%) 7 (58) 1 (25) 1 (25) 3 (60) 0.48 
Age in years, (μ 
± SD) 

46 ± 10 67 ± 22 61 ± 16 58 ± 18 0.08 

BMI (μ ± SD)  39 ± 19 37 ± 20 21 ± 3 0.19 
Septic shock, # 
(%) 

 4 (100) 1 (25) 4 (80)  

CCI (median)  5.5 2 2  
Comorbidities 
(#) 

Cancer (1), COPD 
(1), DM (1), HTN 
(3) 

COPD (1), DM (2), 
HTN (4) 

COPD (1), DM 
(1), HTN (4) 

DM (1), HTN (2)  

Admission 
Diagnosis (#) 

 NSTI (1), 
Choledocholithiasis 
(1), SBO (1), Planned 
operation (1) 

NSTI (2), SBO 
(2) 

Planned operation 
(1), Complication (1), 
Intra-abdominal 
abscess (1) 
Pancreatitis (1), MCC 
(1) 

 

 1055 
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Table 2. Percentage of Total MDSCs and MDSC subpopulations from PBMCs via flow 1056 
cytometry. Percentages of total MDSC population in representative septic patients. Blood was 1057 
collected from healthy subjects (n=6), day 4 ± 1 septic patients (n=7), and late sepsis patients at 1058 
days 14-21 (n=3)). PBMCs were isolated and prepared for flow cytometry. Viable cells 1059 
determined followed by gating of CD11b+ and CD33+ cells. HLA-DRlow cells selected to capture 1060 
Total MDSCs. (CD11b+ CD33+ HLA-DRlow) Cells outside the gating of the three MDSC 1061 
subpopulations are classified as “% Ungated.” 1062 
 1063 

MDSC Subpopulation Healthy Subjects 
(n=6) 

Sepsis Day 4 ± 1 
(n=7) 

Sepsis Days 14-21 
(n=3) 

% Total MDSCs 15.1 (8.1, 16.6) 39.2 (25.2, 55.6) 44.8 (35.6, 56.3) 
% E-MDSC 68.1 (49.8, 78.7) 1.4 (0.7, 5.9) 2.3 (2.2, 9.0) 
% PMN-MDSC 14.6 (7.4, 36.9) 79.5 (64.4, 89.0) 80.7 (52.0, 85.1) 
% M-MDSC 9.2 (4.9, 12.7) 9.1 (8.1, 12.7) 11.5 (9.7, 35.9) 
% Ungated 2.0 (1.4, 3.2) 0.7 (0.5, 1.3) 0.7 (0.7, 3.1) 
 1064 

Table 3. Percentage of Total MDSCs and MDSC subpopulations from PBMCs and 1065 
enriched myeloid cells via flow cytometry. Percentages of total MDSC population in 1066 
representative septic patients. Peripheral blood mononuclear cells and myeloid cells were 1067 
collected from the same septic cohorts (n=3 for acute sepsis and n=6 for late sepsis patients) and 1068 
healthy subjects (n=9). A 3:1 mixture of myeloid cells: enriched PBMCs were prepared for flow 1069 
cytometry. Cells outside the gating of the three MDSC subpopulations are classified as “% 1070 
Ungated.” Results reported as median (Q1, Q3). E: early, PMN: granulocytic, M: monocytic. 1071 

 1072 

MDSC Subpopulation Healthy Subjects 
(n=9) 

Sepsis Day 4±1 
(n=3) 

Sepsis Days 14-21 
(n=6) 

% Total MDSCs 0.3 (0.1, 0.3) 3.1 (1.8, 3.6) 0.8 (0.5, 1.3) 
% E-MDSC 1.3 (1.1, 5.3) 0.7 (0.5, 1.2) 1.0 (0.5, 6.0) 
% PMN-MDSC 22.9 (11.6, 30.3) 26.7 (16.5, 34.5) 23.5 (16.0, 39.9) 
% M-MDSC 67.1 (64.6, 83.1) 71.0 (64.0, 81.4) 68.2 (57.2, 80.6) 
% Ungated 0.3 (0.0, 0.5) 0.6 (0.3, 1.6) 0.5 (0.3, 0.7) 
 1073 

Table 4. H-MDSC cell counts by patient and associated outcome after sepsis. H-MDSC cell 1074 
counts as determined by manual annotation. If blood samples were taken from acutely septic 1075 
patients at day 4, then their eventual sepsis classification has been recorded. H: hybrid, CCI: 1076 
chronic critical illness. 1077 
 1078 

Patient # Patient Classification Eventual classification if 
acute sepsis 

H-MDSC Cell Counts 

1 Acute Sepsis Early death 0 
2 Acute Sepsis Rapid recovery 0 
3 Acute Sepsis CCI 1 
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