

Funding: National Eye Institute and Office of Behavioral and Social Sciences Research (R01

EY027314, R01 EY027314-05S1 Research Supplement to Promote Diversity in Health-Related

Research Program, R01 EY027314-05S2 Admi EY027314, R01 EY027314-05S1 Research Supplement to Promote Diversity in Health-Related

Research Program, R01 EY027314-05S2 Administrative Supplement, P30 EY001319 and T32

EY007125 to the Center for Visual Science); Resea Research Program, R01 EY027314-05S2 Administrative Supplement, P30 EY001319 and T32

20 EY007125 to the Center for Visual Science); Research to Prevent Blindness (Unrestricted Grant

21 to the Department of Ophthalmology); EY007125 to the Center for Visual Science); Research to Prevent Blindness (Unrestricted Grant
31 to the Department of Ophthalmology); Center of Emerging and Innovative Science for Empire
32 State Development (project no.: to the Department of Ophthalmology); Center of Emerging and Innovative Science for Empire

State Development (project no.: 1730C004); the Center of Excellence (project no: 1689bC2).

33
 Conflict of Interest: All authors State Development (project no.: 1730C004); the Center of Excellence (project no: 1689bC2).
33
Conflict of Interest: All authors report no conflicts of interest for the present study.
35
Ethiop Annoval, and Patient Cense

-
-

 34
 35
 36
 37 **Conflict of Interest:** All authors report no conflicts of interest for the present study.
 35
 Ethics Approval and Patient Consent: Clinical procedures for the present

approved by the Western Institutional Review Boa 36
 37
 38
 30 **Ethics Approval and Patient Consent**: Clinical procedures for the present study were
approved by the Western Institutional Review Board for patients enrolled in clinical trial
NCT03350919 (WIRB#1181904) and by the Researc approved by the Western Institutional Review Board for patients enrolled in clinical trial
38 NCT03350919 (WIRB#1181904) and by the Research Subject Review Board at the University
39 of Rochester for NCT04798924 and NCT050 NCT03350919 (WIRB#1181904) and by the Research Subject Review Board at the University
of Rochester for NCT04798924 and NCT05098236. All procedures complied with the tenets of
the Declaration of Helsinki and were conducted 39 of Rochester for NCT04798924 and NCT05098236. All procedures complied with the tenets of
40 the Declaration of Helsinki and were conducted after receiving written, informed consent from
41 each participant.
42 the Declaration of Helsinki and were conducted after receiving written, informed consent from

each participant.

42
 Author Contacts: Neil Dogra - ndogra@u.rochester.edu

44

Price V. Bodmond, brice redmond@urme.rochest

-
- 41 each participant.
42 **Author Contacts
44 Bryan V. Redmor
45 Belens Lilley es** 43
44
45
46
- Author Contacts: Neil Dogra ndogra@u.rochester.edu
44 Bryan V. Redmond bryan_redmond@urmc.rochester.edu
45 Selena Lilley selenaklilley@gmail.com
46 Brent A. Johnson brent_johnson@urmc.rochester.edu
-
- Bryan V. Redmond bryan_redmond@urmc.rochester.edu
45 Selena Lilley selenaklilley@gmail.com
46 Brent A. Johnson brent_johnson@urmc.rochester.edu
47 Byron L. Lam blam@med.miami.edu
48 Madhura Tambankar, madhura tamba
-
- Selena Lilley selenaklilley@gmail.com
46 Brent A. Johnson brent_johnson@urm
47 Byron L. Lam blam@med.miami.edu
48 Madhura Tamhankar madhura.tamhan
49 Steven E. Felden, steven, felden@urm Brent A. Johnson - brent_johnson@urmc.rochester.edu
47 Byron L. Lam - blam@med.miami.edu
48 Madhura Tamhankar - madhura.tamhankar@pennmedi
59 Steven E. Feldon - steven_feldon@urmc.rochester.edu 47 Byron L. Lam - blam@med.miami.edu
48 Madhura Tamhankar - madhura.tamha
49 Steven E. Feldon - steven_feldon@uri
50 Berkeley Fahrenthold - berkeley_fahre
-
- Madhura Tamhankar madhura.tamhankar@pennmedicine.upenn.edu

49 Steven E. Feldon steven_feldon@urmc.rochester.edu

50 Berkeley Fahrenthold berkeley_fahrenthold@urmc.rochester.edu

51 Jingyi Yang jingyi_yang@urmc.roc Steven E. Feldon - steven_feldon@urmc.rochester.edu
50 Berkeley Fahrenthold - berkeley_fahrenthold@urmc.roc
51 Jingyi Yang - jingyi_yang@urmc.rochester.edu
52 Krystel R. Huxlin - khuxlin@ur.rochester.edu 50 Berkeley Fahrenthold - berkeley_fahrenthold@urmc.rochester.edu
51 Jingyi Yang - jingyi_yang@urmc.rochester.edu
52 Krystel R. Huxlin - khuxlin@ur.rochester.edu
- 51 Jingyi Yang jingyi_yang@urmc.rochester.edu
52 Krystel R. Huxlin khuxlin@ur.rochester.edu
1
- 52 Krystel R. Huxlin khuxlin@ur.rochester.edu

.

.

.

Matthew R. Cavanaugh - matthew_cavanaugh@urmc.rochester.edu
 Abstract
 Background/Objectives: Stroke damage to the primary vist

homonymous visual field defects that impair daily living. Here, we a

F7 of life (V Ool) 54 **Abstract**
55 **Backgrou**
56 homonym
57 of life (V-C **Background/Objectives:** Stroke damage to the primary visual cortex induces large,

bomonymous visual field defects that impair daily living. Here, we asked if vision-related quality

of life (V-QoL) is impacted by time si

56 homonymous visual field defects that impair daily living. Here, we asked if vision-related quality
57 of life (V-QoL) is impacted by time since stroke.
58 **Subjects/Methods:** We conducted a retrospective meta-analysis o 57 of life (V-QoL) is impacted by time since stroke.
58 **Subjects/Methods:** We conducted a retrospect
59 (F/M=26/69, 27-78 years old, 0.5 to 373.5 mor
60 using the National Eye Institute Visual Function **Subjects/Methods:** We conducted a retrospective meta-analysis of 95 occipital stroke patients

(F/M=26/69, 27-78 years old, 0.5 to 373.5 months post-stroke) in whom V-QoL was estimated

using the National Eye Institute Vi 59 (F/M=26/69, 27-78 years old, 0.5 to 373.5 months post-stroke) in whom V-QoL was estimated
50 using the National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) and its 10-item
51 neuro-ophthalmic supplement (Ne 60 using the National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) and its 10-item
61 neuro-ophthalmic supplement (Neuro10). Visual deficit severity was represented by the
62 Perimetric Mean Deviation (PMD) cal 61 neuro-ophthalmic supplement (Neuro10). Visual deficit severity was represented by the
62 Perimetric Mean Deviation (PMD) calculated from 24-2 Humphrey visual fields. Data were
63 compared with published cohorts of visua 62 Perimetric Mean Deviation (PMD) calculated from 24-2 Humphrey visual fields. Data were
63 compared with published cohorts of visually-intact controls. The relationship between V-QoL and
64 time post-stroke was assessed compared with published cohorts of visually-intact controls. The relationship between V-QoL and
64 time post-stroke was assessed across participants, adjusting for deficit severity and age with a
65 multiple linear regress

time post-stroke was assessed across participants, adjusting for deficit severity and age with a
65 multiple linear regression analysis.
66 **Results:** Occipital stroke patients had significantly lower NEI-VFQ and Neuro10 c 65 multiple linear regression analysis.
66 **Results:** Occipital stroke patients
67 scores than controls. All subscale
68 functioning were impaired except Results: Occipital stroke patients had significantly lower NEI-VFQ and Neuro10 composite
scores than controls. All subscale scores describing specific aspects of visual ability and
functioning were impaired except for ocul scores than controls. All subscale scores describing specific aspects of visual ability and
68 functioning were impaired except for ocular pain and general health, which did not differ
69 significantly from controls. Surpr functioning were impaired except for ocular pain and general health, which did not differ
69 significantly from controls. Surprisingly, visual deficit severity was not correlated with either
70 composite score, both of whi significantly from controls. Surprisingly, visual deficit severity was not correlated with either

70 composite score, both of which increased with time post-stroke, even when adjusting for PMD

71 and age.
 Conclusions:

composite score, both of which increased with time post-stroke, even when adjusting for PMD

21 and age.
 Conclusions: V-QoL appears to improve with time post-occipital stroke, irrespective of visual

21 deficit size or 71 and age.
72 **Conclusi**
73 deficit siz
74 strategies **Conclusions:** V-QoL appears to improve with time post-occipital stroke, irrespective of visual
deficit size or patient age at insult. This may reflect the natural development of compensatory
strategies and lifestyle adjus deficit size or patient age at insult. This may reflect the natural development of compensatory

strategies and lifestyle adjustments. Thus, future studies examining the impact of rehabilitation

on daily living in this pa 14 strategies and lifestyle adjustments. Thus, future studies examining the impact of rehabilitation
15 on daily living in this patient population should consider the possibility that their V-QoL may
16 change gradually ov on daily living in this patient population should consider the possibility that their V-QoL may

76 change gradually over time, even without therapeutic intervention.

77
 Keywords: Stroke, Quality of Life, Cortical Blin 276 change gradually over time, even without therapeutic intervention.

27

27 **Keywords:** Stroke, Quality of Life, Cortical Blindness

28 **Keywords:** Stroke, Quality of Life, Cortical Blindness

77 78 **Keywords:** Stroke, Quality of Life, Cortical Blindness

79 **Introduction**
80 Occipital strok
81 Kedar, Lynn,
82 portions of th Occipital stroke is the leading source of damage to the human primary visual cortex (V1; Zhang,
81 Kedar, Lynn, Newman, & Biousse, 2006), causing a loss of conscious vision over similar
82 portions of the visual field thro Kedar, Lynn, Newman, & Biousse, 2006), causing a loss of conscious vision over similar
82 portions of the visual field through both eyes (Gilhotra, Mitchell, Healey, Cumming, & Currie,
83 2002; Pollock et al., 2012; Polloc bortions of the visual field through both eyes (Gilhotra, Mitchell, Healey, Cumming, & Currie, 2002; Pollock et al., 2012; Pollock et al., 2011). This condition is known by many names but in this manuscript, it will be ref 2002; Pollock et al., 2012; Pollock et al., 2011). This condition is known by many names but in
84 this manuscript, it will be referred to as cortically-induced blindness (CB). It affects a significant
85 portion of stroke 84 this manuscript, it will be referred to as cortically-induced blindness (CB). It affects a significant
85 portion of stroke survivors, with an estimated 1% of the population over age 49 years likely to
86 develop CB in 85 portion of stroke survivors, with an estimated 1% of the population over age 49 years likely to
86 develop CB in their lifetime (Gilhotra et al., 2002), and ~100,000 new cases each year in the US
87 and Europe (Gray et develop CB in their lifetime (Gilhotra et al., 2002), and ~100,000 new cases each year in the US

87 and Europe (Gray et al., 1989; Pollock et al., 2012; Pollock et al., 2011; Rowe, 2013; Sahraie,

88 2007).

Activities of

and Europe (Gray et al., 1989; Pollock et al., 2012; Pollock et al., 2011; Rowe, 2013; Sahraie,

2007).

Activities of daily living including reading, driving, navigation, and autonomy are severely

90 impaired in CB (Domb 88 2007).
89
90 impaire
91 Until re Activities of daily living including reading, driving, navigation, and autonomy are severely

90 impaired in CB (Dombovy, Sandok, & Basford, 1986; Jones & Shinton, 2006; Jongbloed, 1986).

91 Until recently, this vision lo impaired in CB (Dombovy, Sandok, & Basford, 1986; Jones & Shinton, 2006; Jongbloed, 1986).
91 Until recently, this vision loss was considered irreversible, with most patients discharged without
92 rehabilitation opportunit Until recently, this vision loss was considered irreversible, with most patients discharged without

rehabilitation opportunities (Horton, 2005a, 2005b; Plant, 2005; Pollock et al., 2019; Reinhard et

al., 2005). As a resu rehabilitation opportunities (Horton, 2005a, 2005b; Plant, 2005; Pollock et al., 2019; Reinhard et al., 2005). As a result, there is little follow-up or monitoring of progression in CB, despite its significant impact on vi al., 2005). As a result, there is little follow-up or monitoring of progression in CB, despite its
94 significant impact on visual quality of life (V-QoL). However, accumulating experimental
95 evidence suggests that visua significant impact on visual quality of life (V-QoL). However, accumulating experimental
evidence suggests that visual training can recover a range of perceptual abilities within CB
fields (for review, see Liu, Hanly, Fahe evidence suggests that visual training can recover a range of perceptual abilities within CB

96 fields (for review, see Liu, Hanly, Fahey, Fong, & Bye, 2019; Melnick, Tadin, & Huxlin, 2016;

97 Saionz, Busza, & Huxlin, 20 fields (for review, see Liu, Hanly, Fahey, Fong, & Bye, 2019; Melnick, Tadin, & Huxlin, 2016;
Saionz, Busza, & Huxlin, 2022; Saionz, Feldon, & Huxlin, 2020). As restoration therapies
targeting CB continue to develop, a bet Saionz, Busza, & Huxlin, 2022; Saionz, Feldon, & Huxlin, 2020). As restoration therapies
198 targeting CB continue to develop, a better understanding of the natural evolution of V-QoL and
199 the major factors driving thes targeting CB continue to develop, a better understanding of the natural evolution of V-QoL and
the major factors driving these changes is essential to correctly interpret the impact of both the
condition, and its rehabilit

the major factors driving these changes is essential to correctly interpret the impact of both the

condition, and its rehabilitation, on daily living.

The National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) 100 condition, and its rehabilitation, on daily living.

101 The National Eye Institute Visual Fur

102 validated, self-administered survey that has I

103 patients (Chen et al., 2009; Gall, Franke, & Sa 101 The National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) is a clinically

102 validated, self-administered survey that has been extensively used to evaluate V-QoL in CB

103 patients (Chen et al., 2009; Ga validated, self-administered survey that has been extensively used to evaluate V-QoL in CB

103 patients (Chen et al., 2009; Gall, Franke, & Sabel, 2010; Gall, Lucklum, Sabel, & Franke, 2009;

104 George, Hayes, Chen, & Cr 103 patients (Chen et al., 2009; Gall, Franke, & Sabel, 2010; Gall, Lucklum, Sabel, & Franke, 2009;
104 George, Hayes, Chen, & Crotty, 2011; Papageorgiou et al., 2007; Rowe et al., 2019). It asks 104 George, Hayes, Chen, & Crotty, 2011; Papageorgiou et al., 2007; Rowe et al., 2019). It asks respondents to assess difficulties they face with vision-specific functioning in contexts that
106 include social gatherings, workplace performance, and pursuit of personal hobbies (Mangione,
107 et al., 2001; Mangione et include social gatherings, workplace performance, and pursuit of personal hobbies (Mangione,
107 et al., 2001; Mangione et al., 1998). Responses from the questionnaire are used to assign
108 numeric scores to 12 subscales: et al., 2001; Mangione et al., 1998). Responses from the questionnaire are used to assign
108 numeric scores to 12 subscales: general health, general vision, ocular pain, near activities,
109 distance activities, social fu numeric scores to 12 subscales: general health, general vision, ocular pain, near activities,
109 distance activities, social functioning, mental health, role difficulties, dependency, driving, color
110 vision, and periph distance activities, social functioning, mental health, role difficulties, dependency, driving, color
110 vision, and peripheral vision. A composite score describing overall V-QoL is then generated by
111 averaging all sub vision, and peripheral vision. A composite score describing overall V-QoL is then generated by
111 averaging all subscale scores except for general health. The NEI-VFQ can also be administered
112 with a 10-item neuro-opht averaging all subscale scores except for general health. The NEI-VFQ can also be administered
112 with a 10-item neuro-ophthalmic supplement (Neuro10), which generates an independent,
113 composite score describing neuro-o with a 10-item neuro-ophthalmic supplement (Neuro10), which generates an independent,
113 composite score describing neuro-ophthalmic functions (Raphael et al., 2006). All scores scale
114 from 0 to 100, with higher scores

composite score describing neuro-ophthalmic functions (Raphael et al., 2006). All scores scale
114 from 0 to 100, with higher scores indicating better functioning.
115 One prior study found lower NEI-VFQ composite scores i 114 from 0 to 100, with higher scores indicating better functioning.

115 One prior study found lower NEI-VFQ composite so

116 induced V1 damage compared to a control group of health

117 2007). The authors reported that 115 One prior study found lower NEI-VFQ composite scores in 33 patients with stroke-
116 induced V1 damage compared to a control group of healthy subjects (Papageorgiou et al.,
117 2007). The authors reported that time si induced V1 damage compared to a control group of healthy subjects (Papageorgiou et al.,
117 2007). The authors reported that time since stroke and visual deficit severity did not affect NEI-
118 VFQ scores, but only patien 2007). The authors reported that time since stroke and visual deficit severity did not affect NEI-
118 VFQ scores, but only patients in the chronic phase (≥6 months) post-stroke were included
119 (Papageorgiou et al., 2007 118 VFQ scores, but only patients in the chronic phase (≥6 months) post-stroke were included
119 (Papageorgiou et al., 2007). Similar findings were reported in another sample of 177 first-ever,
120 chronic stroke patients (Papageorgiou et al., 2007). Similar findings were reported in another sample of 177 first-ever,

120 chronic stroke patients (Gall et al., 2010). Finally, a study that included both acute and sub-

121 acute patients (n=6 chronic stroke patients (Gall et al., 2010). Finally, a study that included both acute and sub-
121 acute patients (n=66) reported a large impact of deficit severity on V-QoL, but did not assess
122 the effect of time-post acute patients (n=66) reported a large impact of deficit severity on V-QoL, but did not assess
122 the effect of time-post stroke (Tharaldsen et al., 2020). Here, we examined V-QoL in 95 CB
123 patients with V1 damage from the effect of time-post stroke (Tharaldsen et al., 2020). Here, we examined V-QoL in 95 CB

123 patients with V1 damage from a single etiology (occipital stroke), and in the absence of any

124 therapeutic intervention for patients with V1 damage from a single etiology (occipital stroke), and in the absence of any
124 therapeutic intervention for their vision loss. Our goal was to assess if V-QoL differed for
125 patients <1 month to several therapeutic intervention for their vision loss. Our goal was to assess if V-QoL differed for
125 patients <1 month to several years post-stroke. We also gauged the relative influence of deficit
126 size/severity and partic patients <1 month to several years post-stroke. We also gauged the relative influence of deficit
126 size/severity and participant age on this natural history. Finally, by examining individual
127 subscale scores, we asked 126 size/severity and participant age on this natural history. Finally, by examining individual
127 subscale scores, we asked which aspects of visual or social functioning drove observed
128 differences.
129 127 subscale scores, we asked which aspects of visual or social functioning drove observed

128 differences.

129 128 differences.
129

130 **Methods**
131 **Participal**
132 We condu
133 vision los 131 **Participants**
132 We conducted
133 vision loss f
134 resonance im 132 We conducted a retrospective, meta-analysis of V-QoL data from 95 patients with homonymous
133 vision loss from stroke-induced damage to the occipital cortex, confirmed by magnetic
134 resonance imaging or computed tom vision loss from stroke-induced damage to the occipital cortex, confirmed by magnetic
134 resonance imaging or computed tomography (Fig. 1A). Patients were enrolled in one of two
135 vision restoration clinical trials (Cli resonance imaging or computed tomography (Fig. 1A). Patients were enrolled in one of two
135 vision restoration clinical trials (ClinicalTrials.gov identifiers: NCT04798924, NCT03350919), or
136 in experimental studies con vision restoration clinical trials (ClinicalTrials.gov identifiers: NCT04798924, NCT03350919), or
136 in experimental studies conducted by the Huxlin laboratory (NCT05098236). Exclusion criteria in
137 all studies were: be in experimental studies conducted by the Huxlin laboratory (NCT05098236). Exclusion criteria in
137 all studies were: best-corrected visual acuity worse than 20/40, concurrent use of medications
138 that might affect test all studies were: best-corrected visual acuity worse than 20/40, concurrent use of medications

138 that might affect test performance, presence of ocular or neurologic condition(s) other than

139 occipital stroke, which that might affect test performance, presence of ocular or neurologic condition(s) other than
139 occipital stroke, which might cause visual impairment or impede study performance. By
140 including data from 3 different tri occipital stroke, which might cause visual impairment or impede study performance. By
140 including data from 3 different trials, we were able to include a larger number of patients and
141 times post-stroke than were pres

including data from 3 different trials, we were able to include a larger number of patients and
141 times post-stroke than were present in individual studies.
142 V-QoL surveys were collected prior to and in the absence of times post-stroke than were present in individual studies.

142 V-QoL surveys were collected prior to and in th

143 interventions. CB patients (female/male=26/69) w

144 deviation=58±12) years old, and ranged from 0.5 to V-QoL surveys were collected prior to and in the absence of training or rehabilitative

143 interventions. CB patients (female/male=26/69) were aged 27-78 (mean±standard

144 deviation=58±12) years old, and ranged from 0.5 interventions. CB patients (female/male=26/69) were aged 27-78 (mean±standard
144 deviation=58±12) years old, and ranged from 0.5 to 373.5 (26.0±55.4) months post-stroke (see
145 **Supplemental Table 1** for breakdown per NC deviation=58±12) years old, and ranged from 0.5 to 373.5 (26.0±55.4) months post-stroke (see

145 Supplemental Table 1 for breakdown per NCT). Patient data were compared to two published

146 reference groups of visually-i **Supplemental Table 1** for breakdown per NCT). Patient data were compared to two published
146 reference groups of visually-intact control: one for the National Eye Institute Visual Functioning
147 Questionnaire (NEI-VFQ) reference groups of visually-intact control: one for the National Eye Institute Visual Functioning
147 Questionnaire (NEI-VFQ) and another for its 10-item neuro-ophthalmic supplement (Neuro10).
148 The NEI-VFQ reference gr 2147 Questionnaire (NEI-VFQ) and another for its 10-item neuro-ophthalmic supplement (Neuro10).

148 The NEI-VFQ reference group consists of 122 visually-intact participants, 59 \pm 14 years old

149 (Mangione et al., 2001 148 The NEI-VFQ reference group consists of 122 visually-intact participants, 59±14 years old (Mangione et al., 2001); the Neuro10 reference group includes 65 visually-intact controls, 38±12 years old (Raphael et al., 200 149 (Mangione et al., 2001); the Neuro10 reference group includes 65 visually-intact controls, 38 ± 12
150 years old (Raphael et al., 2006). Mean patient age in our CB cohort did not differ significantly
151 from the NEI 150 years old (Raphael et al., 2006). Mean patient age in our CB cohort did not differ significantly
151 from the NEI-VFQ reference group (t_{216} =0.56, p=0.578), but the Neuro10 reference group was
152 significantly you

151 from the NEI-VFQ reference group (t_{216} =0.56, p=0.578), but the Neuro10 reference group was

152 significantly younger (t_{159} =10.38, p<0.0001).

153 Clinical procedures for the present study were approved by the 152 significantly younger (t_{159} =10.38, p<0.0001).
153 Clinical procedures for the present
154 Review Board for patients enrolled in clinica
155 Research Subject Review Board at the 153 Clinical procedures for the present study were approved by the Western Institutional
154 Review Board for patients enrolled in clinical trial NCT03350919 (WIRB#1181904) and by the
155 Research Subject Review Board at t 154 Review Board for patients enrolled in clinical trial NCT03350919 (WIRB#1181904) and by the
155 Research Subject Review Board at the University of Rochester for NCT04798924 and
155 Research Subject Review Board at the U 155 Research Subject Review Board at the University of Rochester for NCT04798924 and NCT05098236. All procedures complied with the tenets of the Declaration of Helsinki and were
157 conducted after receiving written, informed consent from each participant.
158 Quality of Life Measures
169 The quastionneire

conducted after receiving written, informed consent from each participant.
158
Quality of Life Measures
160 The questionnaires administered included the 25-item version of the NEI-1
161 item appendix, requiring in a tota 158
159
160
161
162 **Quality of Life Measures
160** The questionnaires admin
161 item appendix, resulting in
162 the NEI-VFQ were used
163 the MEI-VFQ were used 160 The questionnaires administered included the 25-item version of the NEI-VFQ along with its 14-
161 item appendix, resulting in a total of 39 questions. As per the scoring manual, responses from
162 the NEI-VFQ were use 161 item appendix, resulting in a total of 39 questions. As per the scoring manual, responses from
162 the NEI-VFQ were used to compute 12 subscale scores, which were averaged together
163 (excepting General Health) to gen the NEI-VFQ were used to compute 12 subscale scores, which were averaged together
163 (excepting General Health) to generate a composite score of overall V-QoL (Mangione, 2000).
164 We also administered the 10-item neuro-o (excepting General Health) to generate a composite score of overall V-QoL (Mangione, 2000).
164 We also administered the 10-item neuro-ophthalmic supplement, which generated an
165 independent Neuro10 composite score. Pati We also administered the 10-item neuro-ophthalmic supplement, which generated an
165 independent Neuro10 composite score. Patients received a paper copy of the survey and were
166 instructed to independently complete the q independent Neuro10 composite score. Patients received a paper copy of the survey and were
166 instructed to independently complete the questionnaire at our clinical testing sites. Study staff
167 were present to clarify w I66 instructed to independently complete the questionnaire at our clinical testing sites. Study staff
167 were present to clarify wording but provided no additional input or assistance.
168 **Assessment of Visual Field Defe**

were present to clarify wording but provided no additional input or assistance.
168
Assessment of Visual Field Defect Size and Severity
170 Relative size and severity of CB visual impairments were estimated using a
171 F 168
169
170
171
172 **Assessment of Visual Field Defect Size and Severity**
170 Relative size and severity of CB visual impairments we
171 Field Analyzer II-i at two study sites (87 patients), and a
172 third site (8 patients), with all sites u 170 Relative size and severity of CB visual impairments were estimated using a Humphrey Visual

171 Field Analyzer II-i at two study sites (87 patients), and a Humphrey Visual Field Analyzer 3 at a

172 third site (8 pati 171 Field Analyzer II-i at two study sites (87 patients), and a Humphrey Visual Field Analyzer 3 at a
172 third site (8 patients), with all sites using a 24-2 testing protocol. Patients were presented with
173 white, Gold 172 third site (8 patients), with all sites using a 24-2 testing protocol. Patients were presented with

173 white, Goldman size III stimuli on a white background with a luminance of 11.3 cd/m². Visual

174 sensitivity white, Goldman size III stimuli on a white background with a luminance of 11.3 cd/m². Visual white, Goldman size III stimuli on a white background with a luminance of 11.3 cd/m². Visual
174 sensitivity thresholds for detecting these light targets were calculated using the Swedish
175 Interactive Threshold Algor sensitivity thresholds for detecting these light targets were calculated using the Swedish
175 Interactive Threshold Algorithm (SITA-Standard). Visual acuity was best-corrected to \geq 20/40
176 using trial lenses, and fix Interactive Threshold Algorithm (SITA-Standard). Visual acuity was best-corrected to \geq 20/40
176 using trial lenses, and fixation was controlled with gaze/blind spot automatic settings. Only
177 reliable tests were inc using trial lenses, and fixation was controlled with gaze/blind spot automatic settings. Only
177 reliable tests were included in our analysis, defined by fixation loss, false-negative, and false-
178 positive rates <20%. 177 reliable tests were included in our analysis, defined by fixation loss, false-negative, and false-

178 positive rates <20%. Perimetric mean deviations (PMD), which contrast a participant's visual

179 field against ag 178 positive rates <20%. Perimetric mean deviations (PMD), which contrast a participant's visual
179 field against age-matched, visually intact controls, were calculated monocularly by a proprietary
180 algorithm (Carl Zei 179 field against age-matched, visually intact controls, were calculated monocularly by a proprietary
180 algorithm (Carl Zeiss Meditech), then averaged between eyes to generate a single composite
180 algorithm (Carl Zeiss 180 algorithm (Carl Zeiss Meditech), then averaged between eyes to generate a single composite value for visual deficit size/severity in each patient. More negative PMD values indicated greater
182 visual deficit size/severity over the central 54 deg of the visual field.
183 **Statistical Analyses**
184 **Statistical A**

visual deficit size/severity over the central 54 deg of the visual field.
183
Statistical Analyses
185 Mean NEI-VFQ subscale scores, composite scores, and Neuro 183
184
185
186
187 **184 Statistical Analyses

185 Mean NEI-VFQ subs

186 between CB patient

187 regressions were use** Mean NEI-VFQ subscale scores, composite scores, and Neuro10 scores were compared
186 between CB patients and visually-intact controls using unpaired t-tests. Simple linear
187 regressions were used to assess the linear rel 186 between CB patients and visually-intact controls using unpaired t-tests. Simple linear
187 regressions were used to assess the linear relationships of time post-stroke, age, and PMD with
188 NEI-VFQ and Neuro10 composi 187 regressions were used to assess the linear relationships of time post-stroke, age, and PMD with
188 NEI-VFQ and Neuro10 composite scores. Multiple linear regression analyses were used to
189 determine the associations NEI-VFQ and Neuro10 composite scores. Multiple linear regression analyses were used to
189 determine the associations between outcomes — NEI-VFQ subscale scores, NEI-VFQ
190 composite scores, and Neuro10 composite scores determine the associations between outcomes — NEI-VFQ subscale scores, NEI-VFQ
190 composite scores, and Neuro10 composite scores — and independent variables (i.e., time post-
191 stroke, PMD, and age) in CB patients in th composite scores, and Neuro10 composite scores — and independent variables (i.e., time post-
191 stroke, PMD, and age) in CB patients in the presence of other risk factors. Analyses were
192 conducted using statistical sof 191 stroke, PMD, and age) in CB patients in the presence of other risk factors. Analyses were

192 conducted using statistical software (R Studio Version 2023). Statistical significance was set at

193 p<0.05.

194 192 conducted using statistical software (R Studio Version 2023)**.** Statistical significance was set at 193 p<0.05.

195 **Results**
196 **Characte**
197 The pres
198 with PMI **Characteristics of visual deficits**
197 The present cohort of CB patients
198 with PMDs ranging from -19.3 to -
199 large deficit are shown in Fig. 1A. 197 The present cohort of CB patients presented a wide range of visual deficit sizes and severity,

198 with PMDs ranging from -19.3 to -1.5dB, with a mean of -9.9±4.1dB. Examples of a small and

199 large deficit are sho 198 with PMDs ranging from -19.3 to -1.5dB, with a mean of -9.9±4.1dB. Examples of a small and

199 large deficit are shown in **Fig. 1A**. Critically for subsequent analyses, PMD was not significantly

200 correlated with 199 large deficit are shown in **Fig. 1A**. Critically for subsequent analyses, PMD was not significantly

200 correlated with patient age $(r^2=0.047, p=0.113)$ or time-since-stroke $(r^2=0.062, p=0.065)$, nor

201 was there a correlated with patient age (r^2 =0.047, p=0.113) or time-since-stroke (r^2 correlated with patient age (r²=0.047, p=0.113) or time-since-stroke (r²=0.062, p=0.065), nor
201 was there a significant correlation between time-since-stroke and patient age (r²=0.066,
202 p=0.162).
203 was there a significant correlation between time-since-stroke and patient age $(r^2=0.066$, was there a significant correlation between time-since-stroke and patient age ($r^2 = 0.066$,

202 $p = 0.162$).

203

204 **Impact of occipital stroke on V-QoL**

205 **b** CB patients, the mean NELVEQ sempecite seems were 69

202 p=0.162).
203
204 **Impact of**
205 In CB pa 203
204
205
206
207 **Impact of occipital stroke on V-QoL**

205 In CB patients, the mean NEI-VFQ c

206 score was 73.0±15.8, both significantly

207 the NEI-VFQ and 95.0±5.0 on the Ne 205 In CB patients, the mean NEI-VFQ composite score was 68.2 ± 15.3 and the mean Neuro10
206 score was 73.0 ± 15.8 , both significantly lower than control participants, who scored 93.1 ± 6.8 on
207 the NEI-VFQ and $95.$ score was 73.0±15.8, both significantly lower than control participants, who scored 93.1±6.8 on

207 the NEI-VFQ and 95.0±5.0 on the Neuro10 (**Fig. 1B; Table 1**). Individual NEI-VFQ subscales

208 were impaired on 10/12 ca the NEI-VFQ and 95.0±5.0 on the Neuro10 (**Fig. 1B; Table 1**). Individual NEI-VFQ subscales

208 were impaired on 10/12 categories (all but General Health and Ocular Pain; **Table 1, Fig. 1C**) in

209 CB patients, but intere were impaired on 10/12 categories (all but General Health and Ocular Pain; **Table 1, Fig. 1C**) in
209 CB patients, but interestingly, none were significantly correlated with PMD (**Supp. Fig. 1**).
210 Differences between CB CB patients, but interestingly, none were significantly correlated with PMD (**Supp. Fig. 1**).

210 Differences between CB patients and controls were greatest for Driving, Peripheral Vision,

211 Mental Health, and Role Dif Differences between CB patients and controls were greatest for Driving, Peripheral Vision,
211 Mental Health, and Role Difficulties (**Table 1**). With respect to driving, 2 CB patients reported
212 that they stopped driving Mental Health, and Role Difficulties (**Table 1**). With respect to driving, 2 CB patients reported

212 that they stopped driving for non-vision related reasons. Per the NEI-VFQ scoring manual, a

213 driving score could no that they stopped driving for non-vision related reasons. Per the NEI-VFQ scoring manual, a
213 driving score could not be generated for these patients; therefore, they could not be included in
214 further analysis. Of the driving score could not be generated for these patients; therefore, they could not be included in
214 further analysis. Of the remaining CB patients, approximately 53% (49/93) reported giving up
215 driving due to their vi 214 further analysis. Of the remaining CB patients, approximately 53% (49/93) reported giving up
215 driving due to their vision, generating a driving score of zero, while the rest continued to drive.
216 **Relationship Bet**

driving due to their vision, generating a driving score of zero, while the rest continued to drive.

216
 Relationship Between NEI-VFQ Subscale Scores

218 We used simple linear regressions to correlate subscale scores w 216
217
218
219
220 **Relationship Between NEI-VFQ Subscale Scores**
218 We used simple linear regressions to correlate sub
219 strongest relationships occurred between scores for
220 **2A**). Driving was also significantly correlated with We used simple linear regressions to correlate subscale scores with one another. One of the
219 strongest relationships occurred between scores for Distance Activities and Near Activities (Fig.
220 2A). Driving was also si 219 strongest relationships occurred between scores for Distance Activities and Near Activities (**Fig. 28**). Driving was also significantly correlated with these two subscales (**Fig. 2B, C**), but its **28. 28. 28.** The 220 **2A**). Driving was also significantly correlated with these two subscales (**Fig. 2B, C**), but its strongest correlations were with Mental Health, Role Difficulties, and Dependency (**Fig. 2D-F**).

222 Lastly, scores describing socioemotional functioning (Mental Health, Role Difficulties,

223 Dependency, and Social Func Lastly, scores describing socioemotional functioning (Mental Health, Role Difficulties,
223 Dependency, and Social Functioning) were most strongly intercorrelated with one another.
224 Mental health was most significantly Dependency, and Social Functioning) were most strongly intercorrelated with one another.

224 Mental health was most significantly associated with Role Difficulties, Dependency, and Social

225 Functioning (Fig. 2G-I).

22 Mental health was most significantly associated with Role Difficulties, Dependency, and Social
225 Functioning (Fig. 2G-I).
226 Evolution of QoL scores with time post-stroke
228 La simple linear regressions, poitbor PMD po

225 Functioning (**Fig. 2G-I**).
226
227 **Evolution of QoL score**
228 In simple linear regress 226
227
228
229
230 **Evolution of QoL scores with time post-stroke**
228 In simple linear regressions, neither PMD nor ag
229 composite scores (Figs. 3A-B). PMD was also n
230 (Figs. 3C), but patient age was (Fig. 3D). How In simple linear regressions, neither PMD nor age were significantly correlated with NEI-VFQ

229 composite scores (**Figs. 3A-B**). PMD was also not correlated with Neuro10 composite scores

230 (**Figs. 3C**), but patient ag composite scores (**Figs. 3A-B**). PMD was also not correlated with Neuro10 composite scores

230 (**Figs. 3C**), but patient age was (**Fig. 3D**). However, simple linear regressions showed both

231 composite scores to increas (Figs. 3C), but patient age was (Fig. 3D). However, simple linear regressions showed both
231 composite scores to increase with time post-stroke (Figs. 3E, F) - correlations that remained
232 significant after adjusting fo composite scores to increase with time post-stroke (**Figs. 3E, F**) - correlations that remained
232 significant after adjusting for age and PMD with multiple linear regression analysis (**Table 2**). A
233 one-month increase ignificant after adjusting for age and PMD with multiple linear regression analysis (**Table 2**). A

233 one-month increase in time post-stroke increased the average NEI-VFQ and Neuro10

234 composite scores by ~0.1 units e

one-month increase in time post-stroke increased the average NEI-VFQ and Neuro10

234 composite scores by ~0.1 units each in this model (**Table 2**).

235 Two participants were enrolled >300 months post-stroke: their enroll composite scores by ~0.1 units each in this model (**Table 2**).

235 Two participants were enrolled >300 months post-s

236 stroke were each more than 300 months longer than the mea

237 months) and both more than 325 month Two participants were enrolled >300 months post-stroke: their enrollment dates post-
236 stroke were each more than 300 months longer than the mean enrollment time post-stroke (26.0
237 months) and both more than 325 month 236 stroke were each more than 300 months longer than the mean enrollment time post-stroke (26.0
237 months) and both more than 325 months longer than the median enrollment time post-stroke
238 (9.1 months). To assess whet months) and both more than 325 months longer than the median enrollment time post-stroke

238 (9.1 months). To assess whether these two data points influenced the slope estimate in our

239 linear regression models, i.e., 238 (9.1 months). To assess whether these two data points influenced the slope estimate in our

239 linear regression models, i.e., whether they acted as statistical leverage points, we repeated the

240 multivariate regr linear regression models, i.e., whether they acted as statistical leverage points, we repeated the

240 multivariate regression excluding these two patients; both the NEI-VFQ and Neuro10 composite

241 scores still increas

multivariate regression excluding these two patients; both the NEI-VFQ and Neuro10 composite

241 scores still increased significantly with time post-stroke (p=0.034 and p=0.0008, respectively).

242 Finally, adjusting for scores still increased significantly with time post-stroke (p=0.034 and p=0.0008, respectively).

242 Finally, adjusting for PMD and age, 7/12 NEI-VFQ subscale scores improved w

243 increasing time post-stroke: General He Finally, adjusting for PMD and age, 7/12 NEI-VFQ subscale scores improved with

243 increasing time post-stroke: General Health, General Vision, Distance Activities, Mental Health,

244 Role Difficulties, Dependency, and D 243 increasing time post-stroke: General Health, General Vision, Distance Activities, Mental Health,
244 Role Difficulties, Dependency, and Driving (**Table 2**), even when the analysis excluded
245 participants who stopped 244 Role Difficulties, Dependency, and Driving (**Table 2**), even when the analysis excluded
245 participants who stopped driving post-stroke ("adjusted driving" score, **Table 2**). The remaining 5 245 participants who stopped driving post-stroke ("adjusted driving" score, **Table 2**). The remaining 5

- 246 subscale scores did not change significantly with time since stroke: Ocular Pain, Near Activities,
247 Social Functioning, Color Vision, and Peripheral Vision.
- Social Functioning, Color Vision, and Peripheral Vision.

248 **Discussion**
249 The present
250 discussion re
251 one of the fir The present cross-sectional analysis of post-occipital stroke patients adds to the growing
250 discussion regarding the impact of visual field deficits on vision-related quality of life. Ours is
251 one of the first studie discussion regarding the impact of visual field deficits on vision-related quality of life. Ours is

251 one of the first studies to include both subacute (<6 months post-stroke) and chronic (>6 months

252 post-stroke) pa one of the first studies to include both subacute (<6 months post-stroke) and chronic (>6 months

252 post-stroke) patients in the same analysis, while focusing solely on unilateral stroke sustained in

253 adulthood. This post-stroke) patients in the same analysis, while focusing solely on unilateral stroke sustained in

253 adulthood. This allowed us to assess a wider range of times post-stroke than previous work.

254 Moreover, not binnin adulthood. This allowed us to assess a wider range of times post-stroke than previous work.

254 Moreover, not binning patients by deficit size or lesion age (Gall et al., 2010) allowed novel

255 correlations to emerge be Moreover, not binning patients by deficit size or lesion age (Gall et al., 2010) allowed novel

255 correlations to emerge between these parameters and V-QoL. Specifically, we uncovered that

256 V-QoL appears to increase correlations to emerge between these parameters and V-QoL. Specifically, we uncovered that
256 V-QoL appears to increase with time post-stroke, irrespective of deficit size or patient age.
257 Subscale analyses provided ke V-QoL appears to increase with time post-stroke, irrespective of deficit size or patient age.
257 Subscale analyses provided key insights into the likely drivers of this unexpected relationship.
258 Occipital stroke reduce

257 Subscale analyses provided key insights into the likely drivers of this unexpected relationship.
258 **Occipital stroke reduces vision-related QoL**
260 We compared V-QoL scores among our sample of CB patients to two ref 258
259
260
261
262 **Occipital stroke reduces vision-related QoL**
260 We compared V-QoL scores among our sam
261 visually-intact controls — one for the NEI-VFC
262 NEI-VFQ control group is referenced extensive We compared V-QoL scores among our sample of CB patients to two reference groups of
261 visually-intact controls — one for the NEI-VFQ and another for the Neuro10 supplement. The
262 NEI-VFQ control group is referenced ext visually-intact controls — one for the NEI-VFQ and another for the Neuro10 supplement. The
262 NEI-VFQ control group is referenced extensively in studies quantifying the impact of ophthalmic
263 diseases on V-QoL (Cahill, NEI-VFQ control group is referenced extensively in studies quantifying the impact of ophthalmic

263 diseases on V-QoL (Cahill, Banks, Stinnett, & Toth, 2005; Clemons et al., 2008; Hariprasad et

264 al., 2008; Ma et al., diseases on V-QoL (Cahill, Banks, Stinnett, & Toth, 2005; Clemons et al., 2008; Hariprasad et al., 2008; Ma et al., 2002; Schiffman, Jacobsen, & Whitcup, 2001). This group was well-matched in age to our sample of CB patien 264 al., 2008; Ma et al., 2002; Schiffman, Jacobsen, & Whitcup, 2001). This group was well-matched
265 in age to our sample of CB patients, who nonetheless had significantly lower NEI-VFQ
266 composite scores. CB patients 265 in age to our sample of CB patients, who nonetheless had significantly lower NEI-VFQ
266 composite scores. CB patients also scored lower than controls on the Neuro10 supplement,
267 although the reference group for the composite scores. CB patients also scored lower than controls on the Neuro10 supplement,
267 although the reference group for the latter was younger than our CB patients. Overall,
268 reductions in both NEI-VFQ and Neuro10 although the reference group for the latter was younger than our CB patients. Overall,

268 reductions in both NEI-VFQ and Neuro10 composite scores confirmed that V-QoL was impaired

269 in our cohort of CB stroke-only pat

reductions in both NEI-VFQ and Neuro10 composite scores confirmed that V-QoL was impaired
269 in our cohort of CB stroke-only patients.
270 Notably, 24-2 binocular Humphrey PMD, an objective proxy for central visual defici 269 in our cohort of CB stroke-only patients.
270 Notably, 24-2 binocular Humphre
271 and severity, failed to correlate with NEI
272 age and time post-stroke. Subscale ar Notably, 24-2 binocular Humphrey PMD, an objective proxy for central visual deficit size

271 and severity, failed to correlate with NEI-VFQ or Neuro10 composite scores when adjusting for

272 age and time post-stroke. Sub 271 and severity, failed to correlate with NEI-VFQ or Neuro10 composite scores when adjusting for
272 age and time post-stroke. Subscale analyses revealed a similar lack of correlation between
273 PMD and all NEI-VFQ subsc 272 age and time post-stroke. Subscale analyses revealed a similar lack of correlation between
273 PMD and all NEI-VFQ subscales (Supp. Fig. 1), suggesting that CB patients' perceived 273 PMD and all NEI-VFQ subscales (**Supp. Fig. 1**), suggesting that CB patients' perceived difficulty in visual and socioemotional functioning is not related to the objective severity or size
275 of their central visual deficit. This finding contrasts somewhat with prior literature reporting
276 improved V-QoL s 275 of their central visual deficit. This finding contrasts somewhat with prior literature reporting
276 improved V-QoL scores with increased central visual field sparing (Gall et al., 2010;
277 Papageorgiou et al., 2007), 276 improved V-QoL scores with increased central visual field sparing (Gall et al., 2010;
277 Papageorgiou et al., 2007), and greater improvement in V-QoL with greater spontaneous
278 improvement in deficit size up to 6 mo 277 Papageorgiou et al., 2007), and greater improvement in V-QoL with greater spontaneous
278 improvement in deficit size up to 6 months post-stroke (Tharaldsen et al., 2020). Our results
279 may instead reflect a greater 278 improvement in deficit size up to 6 months post-stroke (Tharaldsen et al., 2020). Our results
279 may instead reflect a greater contribution of other social functioning factors on V-QoL scores in
280 the present cohort may instead reflect a greater contribution of other social functioning factors on V-QoL scores in

280 the present cohort, or be due to our multivariate analyses, which accounted for both age and

281 time since stroke.

2

the present cohort, or be due to our multivariate analyses, which accounted for both age and

281 time since stroke.

282 One important consideration in the context of the present study is that while 24-2 HVF

283 perimetr 281 time since stroke.
282 One impor
283 perimetry is the metric
284 capture the entires One important consideration in the context of the present study is that while 24-2 HVF

283 perimetry is the most commonly-used clinical tool for quantifying visual deficits in CB, it does not

284 capture the entirety of perimetry is the most commonly-used clinical tool for quantifying visual deficits in CB, it does not

284 capture the entirety of the visual field, and may thus miss some of the deficit. In future studies,

285 quantificat capture the entirety of the visual field, and may thus miss some of the deficit. In future studies,

285 quantification and categorization (hemianopia, scotoma, degree of macular sparing, etc.) of the

286 CB deficit with quantification and categorization (hemianopia, scotoma, degree of macular sparing, etc.) of the

286 CB deficit with whole-field methods (e.g., Goldmann or automated kinetic perimetry) may

287 address this problem and it 286 CB deficit with whole-field methods (e.g., Goldmann or automated kinetic perimetry) may
287 address this problem and it is conceivable that they may yield stronger correlations with V-QoL
288 than Humphrey perimetry. F address this problem and it is conceivable that they may yield stronger correlations with V-QoL

288 than Humphrey perimetry. Finally, V-QoL in this patient population could be impacted by patient

289 visual acuity. Prese than Humphrey perimetry. Finally, V-QoL in this patient population could be impacted by patient

289 visual acuity. Presently, all patients were best-corrected to 20/40 or better, and foveal acuity is

290 not thought to b visual acuity. Presently, all patients were best-corrected to 20/40 or better, and foveal acuity is

290 not thought to be impacted in homonymous hemianopia, which typically presents with normal

291 foveal sensitivity (as 290 not thought to be impacted in homonymous hemianopia, which typically presents with normal
291 foveal sensitivity (as was the case in all of our patients' HVFs). Finally, previous reports found
292 no difference in V-Qo 291 foveal sensitivity (as was the case in all of our patients' HVFs). Finally, previous reports found

292 no difference in V-QoL in occipital stroke patients when comparing patients with good vs poor

293 central acuity 292 no difference in V-QoL in occipital stroke patients when comparing patients with good vs poor
293 central acuity (Gall et al., 2010).
294 **Subscale-specific impairments**

central acuity (Gall et al., 2010).
294
**Subscale-specific impairments
296** When investigating the impact 294
295
296
297
298 **Subscale-specific impairments**
296 When investigating the impact of
297 scored significantly lower than a
298 Health and Ocular Pain, consis When investigating the impact of occipital stroke on subscales of the NEI-VFQ, CB patients
297 scored significantly lower than age-matched controls for each subscale except for General
298 Health and Ocular Pain, consisten 297 scored significantly lower than age-matched controls for each subscale except for General
298 Health and Ocular Pain, consistent with prior work (Mangione et al., 2001). The lack of
299 impairment in these two subscale 298 Health and Ocular Pain, consistent with prior work (Mangione et al., 2001). The lack of
299 impairment in these two subscales was unsurprising, as occipital stroke is not associated with 299 impairment in these two subscales was unsurprising, as occipital stroke is not associated with

intervalse was unsurprising, as occipital stroke is not associated with

intervalse was unsurprising, as occipital stroke 900 physical discomfort to the eye, and CB patients enrolled met stringent medical and functional
301 criteria to participate in the studies analyzed (see Methods). In fact, our CB self-reported
302 General Health scores w 301 criteria to participate in the studies analyzed (see Methods). In fact, our CB self-reported
302 General Health scores were as good as those of healthy controls and suggest that differences
303 in other subscales were General Health scores were as good as those of healthy controls and suggest that differences
303 in other subscales were due to the stroke's impact on vision, instead of other impairments seen
304 in the general stroke pop

in other subscales were due to the stroke's impact on vision, instead of other impairments seen
304 in the general stroke population.
305 The observed impairments among CB patients for subscales describing visual ability
3 304 in the general stroke population.
305 The observed impairmer
306 (General Vision, Peripheral Visio
307 homonymous hemianopia is cha The observed impairments among CB patients for subscales describing visual ability
306 (General Vision, Peripheral Vision, Near Activities, and Distance Activities) were expected, since
307 homonymous hemianopia is charact 306 (General Vision, Peripheral Vision, Near Activities, and Distance Activities) were expected, since
307 homonymous hemianopia is characterized by deficits that often span large segments of the
308 visual periphery. Impa 307 homonymous hemianopia is characterized by deficits that often span large segments of the
308 visual periphery. Impairments in socioemotional subscales (Mental Health, Role Difficulties,
309 Dependency, and Social Funct visual periphery. Impairments in socioemotional subscales (Mental Health, Role Difficulties,
309 Dependency, and Social Functioning) may instead be related to post-stroke depression, which
310 has been documented in up to Dependency, and Social Functioning) may instead be related to post-stroke depression, which
310 has been documented in up to half of sufferers within the first 5 years post-stroke (Ayerbe, Ayis,
311 Crichton, Wolfe, & Rudd 310 has been documented in up to half of sufferers within the first 5 years post-stroke (Ayerbe, Ayis,
311 Crichton, Wolfe, & Rudd, 2014; Hackett & Pickles, 2014; Kim & Choi-Kwon, 2000). Impairments
312 in Mental Health an 311 Crichton, Wolfe, & Rudd, 2014; Hackett & Pickles, 2014; Kim & Choi-Kwon, 2000). Impairments
312 in Mental Health and related socioemotional subscales may also be associated with the reduced
313 ability to drive. Drivin in Mental Health and related socioemotional subscales may also be associated with the reduced
313 ability to drive. Driving was the subscale where CB patients scored most poorly compared to
314 controls, with 53% reporting ability to drive. Driving was the subscale where CB patients scored most poorly compared to
314 controls, with 53% reporting that they gave up driving entirely due to their eyesight. Driving
315 cessation has also been ass controls, with 53% reporting that they gave up driving entirely due to their eyesight. Driving
315 cessation has also been associated with increased depressive symptoms in a general
316 population of older adults (Ragland, cessation has also been associated with increased depressive symptoms in a general
316 population of older adults (Ragland, Satariano, & MacLeod, 2005). This was confirmed here,
317 with Driving scores most strongly correl population of older adults (Ragland, Satariano, & MacLeod, 2005). This was confirmed here,
317 with Driving scores most strongly correlated with Mental Health, Role Difficulties and
318 Dependency scores, and driving, or l with Driving scores most strongly correlated with Mental Health, Role Difficulties and
318 Dependency scores, and driving, or lack thereof, may also be a determining factor in role
319 fulfillment.
320 On-road testing foun

Dependency scores, and driving, or lack thereof, may also be a determining factor in role
319 fulfillment.
320 On-road testing found CB patients to have noticeable, but not intractable, driving deficits.
321 Chronic CB pat 319 fulfillment.
320 On-
321 Chronic C
322 population, 320 On-road testing found CB patients to have noticeable, but not intractable, driving deficits.
321 Chronic CB patients have at-fault accident rates 2.6 times higher than the visually-intact
322 population, motivating dri 321 Chronic CB patients have at-fault accident rates 2.6 times higher than the visually-intact
322 population, motivating driving restrictions for hemianopic patients (McGwin, Wood, Huisingh, &
323 Owsley, 2016). However, strategy population, motivating driving restrictions for hemianopic patients (McGwin, Wood, Huisingh, &
323 Owsley, 2016). However, on-road testing found that up to 82% of drivers with homonymous
324 hemianopia committed n 323 Owsley, 2016). However, on-road testing found that up to 82% of drivers with homonymous
324 hemianopia committed no obvious errors while driving (Elgin et al., 2010), and when evaluators
325 were masked to the particip 324 hemianopia committed no obvious errors while driving (Elgin et al., 2010), and when evaluators
325 were masked to the participants' condition, 73% of hemianopic and 88% of quadrantopic
The masked to the participants' c 325 were masked to the participants' condition, 73% of hemianopic and 88% of quadrantopic patients were deemed fit to drive (Wood et al., 2009). Given the large impact of driving on
327 quality of life, evaluation for driving safety and rehabilitation may offer a simple and cost-
4328 effective method of improv quality of life, evaluation for driving safety and rehabilitation may offer a simple and cost-
328 effective method of improving CB patients' quality of life. Finally, we note that pass/fail results for
329 on-road testing effective method of improving CB patients' quality of life. Finally, we note that pass/fail results for

329 on-road testing and simulator environments show good fidelity in CB patients (Ungewiss et al.,

330 2018), sugges on-road testing and simulator environments show good fidelity in CB patients (Ungewiss et al.,
330 2018), suggesting that simulated tests could providing a good-fidelity, safe, naturalistic space for
331 examination of CB 2018), suggesting that simulated tests could providing a good-fidelity, safe, naturalistic space for
331 examination of CB driving ability (Bowers, 2016; Bowers, Mandel, Goldstein, & Peli, 2009).
332 **V-QoL increases natur**

examination of CB driving ability (Bowers, 2016; Bowers, Mandel, Goldstein, & Peli, 2009).
332
V-QoL increases naturally with time since stroke
434 A key finding here was that V-QoL increases with time post-stroke, even 332
333
334
335
336 **V-QoL increases naturally with time since stroke**
334 A key finding here was that V-QoL increases with tim
335 and PMD. Our multivariate analysis included a m
336 month to over 31 years) than any prior work (Gall et 334 A key finding here was that V-QoL increases with time post-stroke, even when adjusting for age
335 and PMD. Our multivariate analysis included a much larger range of post-stroke times \langle <1
336 month to over 31 years 335 and PMD. Our multivariate analysis included a much larger range of post-stroke times \langle <1 month to over 31 years) than any prior work (Gall et al., 2010; Gall et al., 2009; Papageorgiou et al., 2007). Improvement in month to over 31 years) than any prior work (Gall et al., 2010; Gall et al., 2009; Papageorgiou et al., 2007). Improvement in health-related QoL with time has been previously reported in the general stroke population, with al., 2007). Improvement in health-related QoL with time has been previously reported in the
338 general stroke population, with occipital stroke patients showing slower recovery than their
339 visually-intact counterparts general stroke population, with occipital stroke patients showing slower recovery than their
339 visually-intact counterparts (Gall et al., 2010). A distinct possibility is that this slower rate of
340 improvement is a fea visually-intact counterparts (Gall et al., 2010). A distinct possibility is that this slower rate of
340 improvement is a feature of global QoL for CB patients, resulting from the lack of available
341 rehabilitation compa improvement is a feature of global QoL for CB patients, resulting from the lack of available
341 rehabilitation compared to that for speech or motor impairments. Nonetheless, the gradual
342 improvement in V-QoL over time rehabilitation compared to that for speech or motor impairments. Nonetheless, the gradual
342 improvement in V-QoL over time offers hope for CB patients dealing with life changes in the
343 early stages post-stroke.
344 To

improvement in V-QoL over time offers hope for CB patients dealing with life changes in the

sarly stages post-stroke.

To understand what aspects of visual functioning drove the observed larger V-QoL at

later times post-943 early stages post-stroke.

344 To understand wh

345 later times post-stroke, w

346 PMD. Seven improved 344 To understand what aspects of visual functioning drove the observed larger V-QoL at
345 later times post-stroke, we examined individual NEI-VFQ subscale scores, adjusting for age and
346 PMD. Seven improved significant 345 later times post-stroke, we examined individual NEI-VFQ subscale scores, adjusting for age and
346 PMD. Seven improved significantly over time: General Health, General Vision, Distance
347 Activities, Mental Health, Ro 346 PMD. Seven improved significantly over time: General Health, General Vision, Distance
347 Activities, Mental Health, Role Difficulties, Dependency, and Driving. It is notable that these
348 scores were significantly co 347 Activities, Mental Health, Role Difficulties, Dependency, and Driving. It is notable that these
348 scores were significantly correlated with each other in our subscale analyses. As such, any of
350 these categories ma scores were significantly correlated with each other in our subscale analyses. As such, any of
349 these categories may drive the observed overall improvement, enhancing other categories in
350 the process. Alternatively, 349 these categories may drive the observed *overall* improvement, enhancing other categories in
350 the process. Alternatively, they may improve independently, or with some mixed amount of
351 driving effects from specifi 350 the process. Alternatively, they may improve independently, or with some mixed amount of
351 driving effects from specific subscales. The remaining five subscales (Ocular Pain, Near
351 driving effects from specific su 351 driving effects from specific subscales. The remaining five subscales (Ocular Pain, Near

The remaining five subscales (Ocular Pain, Near

The remaining five subscales (Ocular Pain, Near

The remaining five subscales (352 Activities, Social Functioning, Color Vision, and Peripheral Vision) did not improve over time
353 post stroke. Ocular Pain was not impacted by this stroke, leaving Near Activities, Social
354 Functioning, Color Vision post stroke. Ocular Pain was not impacted by this stroke, leaving Near Activities, Social
354 Functioning, Color Vision and Peripheral Vision as potential targets for rehabilitation and
355 counseling.
356 In our earlier c

Functioning, Color Vision and Peripheral Vision as potential targets for rehabilitation and
355 counseling.
1356 In our earlier comparison with visually intact controls, we noted that Mental Health and
1357 Role Difficulti 355 counseling.
356 In ou
357 Role Difficul
358 of self-suffic In our earlier comparison with visually intact controls, we noted that Mental Health and
357 Role Difficulties were among the most impaired subscales in CB patients, likely reflecting a loss
358 of self-sufficiency and pro Role Difficulties were among the most impaired subscales in CB patients, likely reflecting a loss
358 of self-sufficiency and professional ability. Increased scores for Mental Health, Role Difficulties,
359 and Dependency 358 of self-sufficiency and professional ability. Increased scores for Mental Health, Role Difficulties,
359 and Dependency over time may reflect the gradual development of lifestyle adjustments that
360 help patients cont and Dependency over time may reflect the gradual development of lifestyle adjustments that
360 help patients contend with their visual impairment, and recover some self-sufficiency and
361 professional functioning. Alterna 160 help patients contend with their visual impairment, and recover some self-sufficiency and

161 professional functioning. Alternatively, patients may simply become accustomed to their deficit

162 and "learn to live wit

professional functioning. Alternatively, patients may simply become accustomed to their deficit
362 and "learn to live with it", despite the burdens it imposes.
363 Finally, higher V-QoL scores at later times post-stroke d and "learn to live with it", despite the burdens it imposes.

363 Finally, higher V-QoL scores at later times post-s

364 cohort, CB patients remained impaired relative to cont

365 Pain and General Health (Fig. 1). Thus, Finally, higher V-QoL scores at later times post-stroke do not negate the fact that as a
364 cohort, CB patients remained impaired relative to controls in all subscales excepting Ocular
365 Pain and General Health (Fig. 1) cohort, CB patients remained impaired relative to controls in all subscales excepting Ocular
365 Pain and General Health (Fig. 1). Thus, accelerating recovery or enhancing its magnitude may
366 be critical for ultimately i Pain and General Health (**Fig. 1**). Thus, accelerating recovery or enhancing its magnitude may
366 be critical for ultimately improving patient outcomes.
367 **Limitations**

be critical for ultimately improving patient outcomes.
367
368 Limitations
369 A key limitation of the present study was an inability 367
368
369
370
371 368 **Limitations**
369 A key limitations
370 progressed of
371 to make infe 369 A key limitation of the present study was an inability to assess V-QoL in the same patient, as it
370 progressed over time. Instead, we relied upon the different times post-stroke across individuals
371 to make inferen progressed over time. Instead, we relied upon the different times post-stroke across individuals
371 to make inferences about V-QoL natural history. It is hoped that future studies will address this
372 problem and rule ou 371 to make inferences about V-QoL natural history. It is hoped that future studies will address this
372 problem and rule out the possibility of a sampling bias within the CB population who volunteers
373 for research stu

problem and rule out the possibility of a sampling bias within the CB population who volunteers
373 for research studies such as ours, long after their stroke.
374 We should also note that differences in age may have confo 373 for research studies such as ours, long after their stroke.
374 We should also note that differences in age r
375 Neuro10 scores between CB patients and controls, sinc
376 was significantly younger than our CB patients We should also note that differences in age may have confounded comparison of
375 Neuro10 scores between CB patients and controls, since the reference group for those scores
376 was significantly younger than our CB patien 375 Neuro10 scores between CB patients and controls, since the reference group for those scores
376 was significantly younger than our CB patients (Raphael et al., 2006). However, given the
377 extreme degree of V-QoL impa 376 was significantly younger than our CB patients (Raphael et al., 2006). However, given the
377 extreme degree of V-QoL impairment in CB evidenced by the NEI-VFQ, and its lack of 377 extreme degree of V-QoL impairment in CB evidenced by the NEI-VFQ, and its lack of

correlation with age, it is likely our observations would hold for the Neuro10, even with
379 appropriately-matched controls.
380 Finally, although the NEI-VFQ has been used extensively to quantify V-QoL in CB
381 patients 379 appropriately-matched controls.
380 Finally, although the NE
381 patients, we note that it was orig
382 2009). As such, it may not Finally, although the NEI-VFQ has been used extensively to quantify V-QoL in CB
381 patients, we note that it was originally designed for patients with ophthalmic disease (Gall et al.,
382 2009). As such, it may not robust patients, we note that it was originally designed for patients with ophthalmic disease (Gall et al.,
382 2009). As such, it may not robustly capture all aspects of V-QoL that pertain to CB.
383 Development and validation o 2009). As such, it may not robustly capture all aspects of V-QoL that pertain to CB.
383 Development and validation of a CB-specific questionnaire could significantly improve our
384 understanding of this condition and its Development and validation of a CB-specific questionnaire could significantly improve our
384 understanding of this condition and its impact on daily life.
385 **Conclusions and importance of knowledge gained**
387 MOok in g

understanding of this condition and its impact on daily life.
385 **Conclusions and importance of knowledge gained**
387 V-QoL is significantly reduced by occipital strokes sus 385
386
387
388
389 **Conclusions and importance of knowledge gained**
387 V-QoL is significantly reduced by occipital strokes
388 size/severity nor age were significant predictors of this
389 design and large range of times post-stroke reveale V-QoL is significantly reduced by occipital strokes sustained in adulthood. Neither deficit
388 size/severity nor age were significant predictors of this reduction. However, our cross-sectional
389 design and large range o size/severity nor age were significant predictors of this reduction. However, our cross-sectional
389 design and large range of times post-stroke revealed that both composite scores and some key,
390 individual sub-scores design and large range of times post-stroke revealed that both composite scores and some key,
390 individual sub-scores to be greater at later versus earlier times post-stroke. This suggests a
391 spontaneous increase in V individual sub-scores to be greater at later *versus* earlier times post-stroke. This suggests a
391 spontaneous increase in V-QoL with time, even after adjusting for patient age and deficit
392 severity. These results pro spontaneous increase in V-QoL with time, even after adjusting for patient age and deficit
392 severity. These results provide new, potentially key information for patients, clinicians and
393 researchers as to the main dri severity. These results provide new, potentially key information for patients, clinicians and
393 researchers as to the main drivers of V-QoL after occipital stroke. It is now possible to describe
394 what changes patients researchers as to the main drivers of V-QoL after occipital stroke. It is now possible to describe
394 what changes patients might expect as they progress in their stroke recovery. Just as
395 importantly, it alerts the fi 394 what changes patients might expect as they progress in their stroke recovery. Just as
395 importantly, it alerts the field to the fact that V-QoL may improve spontaneously after occipital
396 stroke, a trend against wh 395 importantly, it alerts the field to the fact that V-QoL may improve spontaneously after occipital
396 stroke, a trend against which vision restoration therapies in this patient population should be
397 measured in orde 396 stroke, a trend against which vision restoration therapies in this patient population should be
397 measured in order to assess their true impact. 397 measured in order to assess their true impact.

The impact of the set of th

398 **Figure legends**
399 **Figure 1. A.** Sai
400 right (OD) eye
401 radiological conv **Figure 1. A.** Sample magnetic resonance images (T1) of 2 CB patients, whose left (OS) and

400 right (OD) eye Humphrey visual fields (HVF) are shown adjacently. For the brain images,

401 radiological convention is used, right (OD) eye Humphrey visual fields (HVF) are shown adjacently. For the brain images,
401 radiological convention is used, with the right brain hemisphere (R) on image left. White arrows
402 on enlargements of the region radiological convention is used, with the right brain hemisphere (R) on image left. White arrows
402 on enlargements of the regions inside the boxes point to lesion site(s) in the occipital lobe of
403 each patient. On HVF on enlargements of the regions inside the boxes point to lesion site(s) in the occipital lobe of
403 each patient. On HVFs, black shading denotes a sensitivity of 0 dB, whereas light stippling
404 indicates higher visual s each patient. On HVFs, black shading denotes a sensitivity of 0 dB, whereas light stippling
404 indicates higher visual sensitivities. Average, binocular (OU) PMDs are indicated for each
405 patient. Note that the larger b indicates higher visual sensitivities. Average, binocular (OU) PMDs are indicated for each

405 patient. Note that the larger brain lesion in CB03 gives rise to a larger area of HVF defect and

406 more negative PMD, than patient. Note that the larger brain lesion in CB03 gives rise to a larger area of HVF defect and
406 more negative PMD, than the smaller brain lesion in CB76. **B.** Mean NEI-VFQ and Neuro10
407 composite scores comparing th more negative PMD, than the smaller brain lesion in CB76. **B.** Mean NEI-VFQ and Neuro10
407 composite scores comparing the present cohort of CB patients with previously-published
408 controls (Mangione et al., 2001; Raphae composite scores comparing the present cohort of CB patients with previously-published
408 controls (Mangione et al., 2001; Raphael et al., 2006). Mean patient age in our CB cohort did
409 not differ significantly. Control controls (Mangione et al., 2001; Raphael et al., 2006). Mean patient age in our CB cohort did

409 not differ significantly. Controls attained significantly higher composite scores than CB patients

410 on both measures. C not differ significantly. Controls attained significantly higher composite scores than CB patients
and on both measures. **C.** Plot of individual NEI-VFQ subscale scores CB patients and the same
controls whose composite sco on both measures. **C.** Plot of individual NEI-VFQ subscale scores CB patients and the same
411 controls whose composite scores are shown in B. Unsurprisingly, controls scored higher for
412 every subscale except for genera 411 controls whose composite scores are shown in B. Unsurprisingly, controls scored higher for
412 every subscale except for general health (p=0.480) and ocular pain (p=0.112). Scores
413 evaluating visual functioning and 412 every subscale except for general health (p=0.480) and ocular pain (p=0.112). Scores

413 evaluating visual functioning and socioemotional functioning are outlined, with "driving" – the

414 most severely affected sub 413 evaluating visual functioning and socioemotional functioning are outlined, with "driving" – the
414 most severely affected subscale - separating these two major categories. Error bars in B and C
415 = standard errors most severely affected subscale - separating these two major categories. Error bars in B and C

415 = standard errors of the mean. * p<0.001.

416 **Figure 2. Significant inter-correlations between key visual functioning an**

415 = standard errors of the mean. * p<0.001.
416
417 **Figure 2. Significant inter-correlational subscales of the NEI-VE** 416
417
418
419
420 Figure 2. Significant inter-correlations between key visual functioning and
418 socioemotional subscales of the NEI-VFQ. Plots of one subscale score against another with
419 each data point denoting a single CB patient. A. socioemotional subscales of the NEI-VFQ. Plots of one subscale score against another with
each data point denoting a single CB patient. A. Simple regression analysis showed Distance
Activities to be correlated significantl each data point denoting a single CB patient. **A.** Simple regression analysis showed Distance
420 Activities to be correlated significantly and positively with Near Activities. **B.** Similarly, Driving
421 correlated signif Activities to be correlated significantly and positively with Near Activities. **B.** Similarly, Driving
correlated significantly and positively with Distance Activities. **C.** Driving correlated significantly
and positively 421 correlated significantly and positively with Distance Activities. **C.** Driving correlated significantly and positively with Mental Health. **E.** Driving correlated significantly and positively with Role Difficulties. **F** 422 and positively with Near Activities. **D.** Driving correlated significantly and positively with Mental
423 Health. **E.** Driving correlated significantly and positively with Role Difficulties. **F.** Driving 423 Health. **E.** Driving correlated significantly and positively with Role Difficulties. **F.** Driving correlated significantly and positively with Dependency. **G.** Mental Health correlated significantly and positively with Dependency. **H.** Mental Health correlated significantly and positively with Social Functioning. **I.** and positively with Dependency. **H.** Mental Health correlated significantly and positively with
426 Social Functioning. **I.** Mental Health correlated significantly and positively with Role Difficulties.
427 **Figure 3. Simp**

Social Functioning. **I.** Mental Health correlated significantly and positively with Role Difficulties.
427
**Figure 3. Simple linear regressions correlating age, PMD, and time post strok
individually with NEI-VFQ and Neuro1** 427
428
429
430
431 Figure 3. Simple linear regressions correlating age, PMD, and time post stroke

429 individually with NEI-VFQ and Neuro10 composite scores. Plots of composite scores

430 against PMD, age and time post-stroke, with each da individually with NEI-VFQ and Neuro10 composite scores. Plots of composite scores
430 against PMD, age and time post-stroke, with each data point denoting individual patients. PMD
431 was not significantly correlated with against PMD, age and time post-stroke, with each data point denoting individual patients. PMD
431 was not significantly correlated with NEI-VFQ composite score (A) or Neuro10 composite score
432 (B). Age was not significan was not significantly correlated with NEI-VFQ composite score **(A)** or Neuro10 composite score
 (B). Age was not significantly correlated with NEI-VFQ composite score **(C)**, but Neuro10

composite score increased signifi **(B)**. Age was not significantly correlated with NEI-VFQ composite score **(C)**, but Neuro10 composite score increased significantly with age **(D)**. Both NEI-VFQ composite score **(E)** and Neuro10 score **(F)** increased signi composite score increased significantly with age **(D)**. Both NEI-VFQ composite score **(E)** and
434 Neuro10 score **(F)** increased significantly with time post-stroke – relationships that were
435 maintained after conducting 434 Neuro10 score (F) increased significantly with time post-stroke – relationships that were
435 maintained after conducting multivariate regression analyses that considered PMD and age
436 (see Table 2 for details). 435 maintained after conducting multivariate regression analyses that considered PMD and age
436 (see Table 2 for details). 436 (see Table 2 for details).

-
- 612 homonymous hemianopia. Neurology, 66(6), 901-905.
613 doi:10.1212/01.wnl.0000203338.54323.22
615 612 homonymous hemianopia. Neurology, 66(6), 901-905.
613 doi:10.1212/01.wnl.0000203338.54323.22
614
- 614
615
3
-
- 615

Table 1. **Descriptive statistics contrasting NEI-VFQ and Neuro10 scores between CB patients and visually-intact controls.** Control data were previously reported controls (Mangione et al., 2001; Raphael et al., 2006). * denotes significance.

Table 2. Multivariate regression analyses of QoL scores and time post-stroke, adjusted for PMD and age. * indicates significance.