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 Rational Empiric Antibiotic Escalation Applied to Specific Patient Groups  22 

 23 

Abstract   24 

 25 

Background  26 

Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress, without 27 
microbiology guidance. When escalating, they should take account of how resistance to an initial 28 
antibiotic affects the probability of resistance to subsequent options.  The term Escalation 29 
Antibiogram (EA) has been coined to describe this concept.  One difficulty when applying the EA 30 
concept to clinical practice is understanding the uncertainty in results and how this changes for 31 
specific patient subgroups.  32 

 33 

Methods 34 

A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative 35 
bloodstream infections based on phenotypic resistance data. It provides an expected value 36 
(posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient 37 
subgroup, and estimates probability of inferiority between two antibiotics. This model can be 38 
applied to specific patient groups where resistance rates and underlying microbiology may differ 39 
from the whole hospital population.  40 

 41 

Results  42 

Rates of resistance to empiric first choice and potential escalation antibiotics were calculated for the 43 
whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of 44 
specific patient groups, including ICU, haematology-oncology, and paediatric patients. Differences in 45 
optimal escalation antibiotic options between specific patient groups were noted.  46 

 47 

Conclusions 48 

EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, 49 
providing an estimate of local resistances rates, and a comparison of antibiotic options with a 50 
measure of the uncertainty in the data.  We demonstrate that EAs calculated for the whole 51 
population cannot be assumed to apply to specific patient groups. 52 
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 54 

Key Summary Points  55 

 Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress, 56 
without microbiology guidance.  57 

 When escalating, they should take account of how resistance to an initial antibiotic affects 58 
the probability of resistance to subsequent options.   59 

 We describe a Bayesian model to guide empiric antibiotic escalation, based on local 60 
resistance data, that can be applied to small patient groups to predict rates of resistance 61 
with credible intervals.   62 

 We demonstrate that the optimal antibiotic escalation for the whole population cannot be 63 
assumed to apply to specific patient groups, such as ICU or haematology patients. 64 

  65 
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Introduction 66 

In many countries, initial empiric antibiotic (AB) choices for the management of bacterial infections 67 
are informed by local guidelines that in turn rely on an understanding of local phenotypic AB 68 
resistance (ABR) patterns from blood culture isolates and other sample types. This initial AB 69 
selection usually takes place within an hour of diagnosis of infection, and well before any 70 
microbiological results are available. Furthermore, microbiological culture is a relatively insensitive 71 
technique. Even in patients with sepsis, only 30–50% will have a positive blood culture (1, 2). Hence, 72 
it is also common for clinicians to empirically escalate AB therapy due to poor clinical progress in the 73 
absence of positive microbiology as a guide. While a poor clinical response may be due to a variety 74 
of factors, for example inadequate source control, it is the possibility of resistance to the first-choice 75 
treatment that usually drives escalated AB therapy. In this context, therefore, it is not the local rate 76 
of resistance to the possible second-choice AB options that should be considered, but the rate of co-77 
resistance to these agents in isolates resistant to the first AB choice. Though widely available, local 78 
phenotypic resistance data are an underused resource, and could be used to gain a better 79 
understanding of circulating co-resistance patterns and improve initial and escalated empiric AB 80 
choice.    81 

Some prior studies have explored this approach. As part of a medical decision support system tool 82 
Zalounina et al (3) included prior AB treatments and local co-resistance data to guide subsequent AB 83 
choice. Wong et al (4) investigated 3,280 Gram-negative bacillus (GNB) blood stream infections (BSI) 84 
looking at the correlation coefficients between pairs of ABs, and the ABR profiles of subsets of 85 
isolates resistant to a specified AB. They discussed examples of how these data could be used to 86 
guide empiric AB escalation. They also suggested that local, unit based, ABR profiles and co-87 
resistance patterns may be more useful than nationally collected data. Recently, Teitelbaum et al (5) 88 
took a similar approach looking at GNB BSIs. They coined the term “escalation antibiogram (EA)” to 89 
describe a profile of resistance to a set of ABs given resistance to an initial set of 12 ABs. Their local 90 
resistance patterns were stable over the period studied, including 6577 GNB BSI episodes, from 6 91 
hospitals in their area allowing the data to be combined and averaged over time. They noted local 92 
EAs were easy to generate, however they did not have the data available to subgroup by presumed 93 
BSI source, and noted that the data may not generalise to specific patient groups.  94 

One difficulty faced when applying the local EA concept to specific patient groups is the small 95 
numbers involved. Moreover, rates of ABR may vary over time and can vary significantly from 96 
country to country (6) and between regions within a country (7,8). Hence when attempting to 97 
produce an EA applicable to certain patient groups, taking an average over several years will not 98 
always be appropriate, nor is it possible to get extra power by combining data from other regions 99 
without diluting the desired effects of providing an EA based on local resistance data. Hence, our 100 
objective was to develop and validate a model that allows tracking of variation in local ABR and co-101 
resistance over time, and so maximises our ability to define an EA for specific patient groups. Our 102 
focus here was on ICU patients, haemato-oncology patients, patients with specific sources of BSI, 103 
and adults over 80 years. The Bayesian model scripts we developed for local use can be applied to 104 
train the model for any region.   105 

 106 

  107 
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Methods 108 

Data collection and cleaning 109 

Data were collected from 3 NHS Trusts covering 4 hospitals in the Southwest of England serving a 110 
population of approximately 1.5 million people (Royal United Hospital Bath NHS Foundation Trust, 111 
University Hospitals Bristol & Weston NHS Foundation Trust, and North Bristol NHS Trust) which 112 
share a single laboratory information management system (Winpath Enterprise 7.23, Clinisys). 113 
Positive blood cultures from all 4 hospitals where GNBs were isolated over a 6-year period, from 114 
2017 to 2022, were included.  115 

For each isolate, the ABR profile was determined by the European Committee on Antimicrobial 116 
Susceptibility Testing (EUCAST) disc testing or by the Biomerieux Vitek 2 automated system. Direct 117 
disc sensitivities were obtained using EUCAST criteria following the Gram stain. In most cases (85%) 118 
isolates from a purity plate were tested using the Vitek 2 system the following day giving ABR 119 
profiles for a wider range of ABs. Vitek results, when available, were used in preference to the initial 120 
disc testing. Results were expressed as “Sensitive”, “Intermediate”, or “Resistant”. Following usual 121 
clinical practices “Intermediate” and “Resistant” isolates were grouped together as non-susceptible, 122 
which from now on we will refer to as “Resistant”.  Healthcare systems that have adopted EUCAST 123 
V14 break points may elect to combine “Sensitive” and “Increase dose” as one group.  When using a 124 
time series of categorical data, changes to the definition of a category e.g. a change in break points 125 
should be delt with by re-categorising the whole data set for affected organisms using MIC data and 126 
new break points.  Producing an R script to do this would be a trivial task.  127 

Repeat samples from the same patient with an indistinguishable isolate (Species ID and ABR profile) 128 
which occurred within 1 year were removed. Following de-duplication, we had 10,486 GNB BSIs over 129 
the 6-year period. For Pseudomonas spp. and Stenotrophomonas spp. isolates, ABs that are not 130 
tested due to assumed intrinsic resistance were automatically set to Resistant.  131 

From 2020 onwards, the presumed source of BSI was recorded in a two-level hierarchical system, 132 
with the highest level consisting of the following groups: central nervous system, cardiac, gastro-133 
intestinal, urine/renal, bone/joint, skin/soft tissue, respiratory, reproductive tract, mouth/head and 134 
neck, line infection, contaminant, unknown, or other. Data were extracted every 3 months and 135 
missing data filled in by case note review.  136 

 137 

Technical details of the Bayesian model 138 

A Bayesian model was developed that estimates ABR rate in GNB BSI and provides an expected value 139 
(posterior mean) and 95% credible interval of ABR rate for a given AB at any chosen time point 140 
within the 6 years of data collected.  141 

Formally, we use a generalised additive model with a Bernoulli likelihood and logit link function for 142 
the binary outcome (Sensitive/Resistant) and a time varying covariate modelled by a penalised thin-143 
plate regression spline. The model generates a series of “credible” curves to fit the resistance data, 144 
each with the same probability of representing the true rate given the inherent uncertainty. To avoid 145 
overfitting, an integrated penalisation term adaptively smooths the curves given the level of 146 
evidence. The model is implemented with the R package ‘brms’ (9), which adopts the Stan platform 147 
for Bayesian inference with Hamiltonian Monte-Carlo sampling (10). Four chains are run for 4,000 148 
iterations, with the first 50% discarded as warm-up, leading to 8,000 plausible curves fitting the data. 149 
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Statistics such as mean and credible intervals can be directly computed from samples of the curves 150 
at the required times.  151 

Resistance rates between two groups or time points are compared by subtracting one set of curves 152 
from another, allowing us to calculate the posterior probability of an increase (PPI) or decrease 153 
(PPD) in resistance over time or the posterior probability of inferiority (PPInf), or superiority (PPSup) 154 
between two AB options.  In keeping with the philosophy of a Bayesian approach we do not attempt 155 
to define what probability of difference or superiority is significant, but to simply provide that 156 
probability of a difference with the 95% credible interval.  157 

 158 

 159 

Results & Discussion 160 

Changes in ABR over time 161 

Over a 6-year period between 2017 to 2022, ABR rates were calculated for deduplicated GNB BSI in 162 
patients across our local hospitals (n=10,486). An example of this output, piperacillin/tazobactam 163 
resistance in haemato-oncology patients is reported (Fig. 1).  164 

The resistance rate increased for meropenem (1.5% to 2.2%, PPI = 88.7%), but reduced slightly (See 165 
supplementary material) in all other ABs studied (piperacillin/tazobactam (Tazocin), gentamicin, 166 
amikacin, cefotaxime, ceftazidime, ciprofloxacin, trimethoprim/sulfamethoxazole (Cotrimoxazole) 167 
and amoxicillin/clavulanate (Coamoxiclav). The reductions ranged from 2.3% in Ceftazidime (Fig. 2a) 168 
(PPD = 94.3%), to 6.9% in trimethoprim/sulfamethoxazole resistance rate (Fig. 2b) (PPD = 98.5%). 169 
This larger reduction in resistance may be related to the removal of trimethoprim as first-line 170 
treatment for lower urinary tract infection  in local community guidelines from April 2017, which 171 
resulted in a reduction in trimethoprim resistance in E. coli from community urine samples (11).  172 

 173 
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 175 

Informing empiric AB choice in specific patient groups 176 

When examining resistance to specific ABs in specific patient populations, the 95% CI tends to widen 177 
due to the reduced sample size. For example, piperacillin/tazobactam resistance in GNB BSIs in ICU 178 
patients has a much wider 95% CI compared to the whole hospital data, as the former is based on 179 
695 positive blood cultures compared to 10,486 for the latter (Fig. 3a, 3b). Over time, 180 
piperacillin/tazobactam resistance rates have increased for ICU patients and haemato-oncology 181 
patients (fig. 3b, 3c), while reducing over the whole hospital population (fig. 3a). Clearly, therefore, 182 
using the mean resistance rate for piperacillin/tazobactam over the 6-year period to inform empiric 183 
AB choice would underestimate the current resistance rate in the ICU and haemato-oncology 184 
populations, while using only the last year or few months data would be excessively influenced by 185 
random month-to-month variation in small patient groups. Our model overcomes this issue as the 186 
time series data allows us to estimate current ABR rates, and the uncertainty, while the model 187 
borrows information from the earlier data. 188 

Following this example, the posterior means between piperacillin/tazobactam resistance rates in 189 
GNB BSI isolates from the ICU population and the whole hospital population are different (27.4% vs 190 
13.4%, respectively), and the 95% CIs do not overlap, suggesting this difference is reliable. The 191 
probability that ICU patients have higher resistance rates can be computed simply as the proportion 192 
of curves that are higher in models of the ICU population than the whole hospital population at this 193 
timepoint, in this case, PPI = 99.9%. 194 

In contrast, the difference between the posterior mean piperacillin/tazobactam resistance rates for 195 
BSI GNBs from ICU and haemato-oncology patients is small (27.4% vs 30.7%) and there is a 196 
considerable overlap in the 95% CIs. This is reflected in the calculated posterior probability of 67.5% 197 
that piperacillin/tazobactam resistance rate is lower in the ICU population compared with the 198 
haemato-oncology population (e.g., PPD = 67.5%) or conversely there is a 32.5% probability that the 199 
resistance rate is greater in ICU patients than in haemato-oncology patients (e.g., PPI = 32.5%). 200 

The situation for ceftazidime is similar, with a higher (and increasing) rate of resistance in both ICU 201 
and haemato-oncology patients compared to the whole hospital population. Both ICU and haemato-202 
oncology patients have a higher proportion of potentially AmpC hyper-producing “SPACE” (Serratia, 203 
Pseudomonas, Acinetobacter, Citrobacter & Enterobacter) isolates compared to the whole 204 
population (ICU 38% vs 25%, PPD = 99.3%) and haemato-oncology (30% vs 25%, PPD = 87.0%) which 205 
explains a proportion of the higher resistance rates.  206 

The increase in ceftazidime resistance over time is likely greater in haemato-oncology patients 207 
(15.2% to 24.5%, PPI = 89.4%) than ICU (17.6% TO 20%, PPI = 66.3%), and is due to both increased 208 
resistance in non-E. coli isolates include in SPACE organisms, (Figure 4) and in an increase in the 209 
proportion of non-E. coli isolates (E. coli reduced from 44% to 35%, PPD = 82%, in haemato-210 
oncology, while in ICU the proportion of E. coli remained at 27%)  211 

 212 
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Calculating an escalation antibiogram (EA) for specific patient groups  214 

To calculate an EA, our Bayesian model is applied for any given second-choice AB to all isolates 215 
resistant to the first-choice AB. Table 1 reports these data for the whole hospital population express 216 
as a most likely rate of resistance with 95% credible intervals. In this population if moving away from 217 
piperacillin/tazobactam we would predict 27% (95% CI 18 to 24) if moving to gentamicin and 31% 218 
(95% CI 21 to 40) if switching to ciprofloxacin.  219 

We can also calculate the probability of inferiority (PPInf) between pairs of alternative antibiotics. 220 
This is shown in figure 5 using data for ICU patients assuming piperacillin/tazobactam resistance.  221 
When making a clinical decision on antibiotic selection, the probability of inferiority is only useful 222 
when both alternatives have a suitably low rate of resistance. 223 

It is worth noting that GNB BSI resistance rates to meropenem are low in this region (~2%), where 224 
meropenem is invariably superior as an empiric choice. Our analysis has therefore focused on other 225 
ABs as meropenem-sparing alternatives. Similarly within our region, resistance rates to newer 226 
antibiotics such as Cetazidime-Avibactam or Meropenem-Vaborbactam are currently too low to 227 
allow inclusion in our analysis.  228 

 229 

Escalation Antibiogram Example 1 230 

In severe Gram-negative infections, two of the most commonly used -lactams are 231 
piperacillin/tazobactam (first-line AB for neutropenic sepsis and widely used in ICU) and ceftazidime 232 
(a useful alternative to piperacillin/tazobactam especially in non-severe penicillin allergy). In our 233 
region, piperacillin/tazobactam and ceftazidime resistance rates among GNB BSIs are similar: 13.4% 234 
(95% CI 10.8 to 16.1) and 10.6% (95% CI 8.9 to 12.7) respectively. The merits of the addition of an 235 
aminoglycoside to a -lactam has been much debated (12,13) but will inevitably depend on local 236 
resistance and co-resistance rates. We will look at the effect of resistance to piperacillin/tazobactam 237 
and ceftazidime on the probability of resistance to gentamicin (our mostly widely used 238 
aminoglycoside) and amikacin (which is rarely used locally) in two specific patient groups, ICU 239 
patients and haemato-oncology and compare these results with those generated from the whole 240 
hospital population. 241 

When comparing a wide group of second line options when adding to, or switching from 242 
piperacillin/tazobactam or ceftazidime (Tables 2 and 3), ABs are ordered in preference for whole 243 
hospital populations, showing the percent resistant with 95% CI, and with the PPInf to that in the 244 
column on its left in the table. Values under 50% indicate the AB is superior to that on its left. 245 

Resistance rates to both aminoglycosides are much higher in isolates resistant to either ceftazidime 246 
or piperacillin/tazobactam, with resistance rates vary from 14% to 39% depending on the patient 247 
group and antibiotic combinations compared to 3% to 13% aminoglycoside resistance in all isolates.  248 

Within the whole hospital population, amikacin remains the best option for patients switching from 249 
either ceftazidime or piperacillin/tazobactam, with a 97% & 95% probability of superiority compared 250 
to gentamicin, although there is a greater relative increase in amikacin resistance compared to 251 
gentamicin (see Tables 2 and 3).  252 
 253 
Within the ceftazidime and piperacillin/tazobactam resistant isolates, both the ICU and haemato-254 
oncology populations differ from the whole hospital population with lower rates of aminoglycoside 255 
resistance in ICU, and higher rates of resistance in haemato-oncology patients (Fig 6).  Within ICU 256 
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patients amikacin is likely to be superior, PPSup = 69.8% if switching from piperacillin/tazobactam 257 
and PPSup = 71% if switching from ceftazidime.  For the haemato-oncology patients there is little 258 
difference between amikacin and gentamicin, (PPSup = 52%) although there is a noticeably higher 259 
rate of resistance for both when switching from ceftazidime compared to piperacillin/tazobactam 260 
(also see plots in supplementary material). 261 
 262 
A difference between whole population and ICU or haemato-oncology populations are seen in a 263 
range of other antibiotics. Within the ICU patients, ciprofloxacin, trimethoprim/sulphamethoxazole 264 
and gentamicin have a similar probability of sensitivity, which is noticeably lower than in the whole 265 
hospital population. While within the haemato-oncology cohort, resistance rates to amikacin and 266 
gentamicin are higher than in the general population, and resistance rates to ciprofloxacin and 267 
trimethoprim/sulphamethoxazole are similar, despite both being used in some prophylaxis regimes. 268 
The resistance rates for all options are high (30-40%), so in a neutropenic patient, meropenem 269 
would be a more suitable alternative.  270 

It is clear therefore, that sub-population analysis will be required by those intending to apply the EA 271 
in clinical practice.  272 

 273 

Escalation Antibiogram Example 2 274 

Having noted how changes in resistance over time differ between species, for example cefotaxime 275 
resistance in E. coli and non-E. coli (See supplementary material), we confirmed that this effect was 276 
also present in piperacillin/tazobactam resistant isolates. (Fig 7). We then looked at two clinical 277 
groups with a high proportion of E. coli infections (patients over 80 years old and patients with a 278 
urinary source of infection) to determine if they differed from the whole hospital population (Tables 279 
4 and 5).   280 

Overall, the proportion of BSI caused by E. coli has very likely decreased from 59.1% (95%CI 54.9 to 281 
63.8) at the start of 2017 to 51.4% (95%CI 47.1 to 55.5, PPD = 99.6%) at the end of 2022. Within 282 
patients over 80 years old, and patients with a BSI of urine or renal tract source we have seen a 283 
similar decrease in the proportion of E. coli BSI, to a current rate of 59.7% (95%CI 54.3 to 64.4) from 284 
68% (95%CI 63.5 to 72.9, PPD = 99.3%) and 57.8 (95%CI 48.5 to 64.4) from  65.6% (95%CI  58.2 to 285 
71.9, PPD = 94.5%) respectively.  286 

When switching from piperacillin/tazobactam (Table 4) it appears that amikacin is the best option, 287 
but in circumstances where an aminoglycoside could not be used (e.g., poor renal function), 288 
cefotaxime is comparable to ciprofloxacin and superior to co-trimoxazole for urinary source 289 
infections.  290 

We would not usually think of empirically changing from piperacillin/tazobactam to cefotaxime, as 291 
the former is usually considered to be broader spectrum, and it is often assumed that resistance to 292 
piperacillin/tazobactam would also confer resistance to 3rd generation cephalosporins. While AmpC 293 
enzymes can confer resistance to both classes, when ESBL-producing isolates are reported as 294 
piperacillin/tazobactam resistant, this can be due to a range of β-lactamases which are not routinely 295 
identified in clinical isolates.  β-Lactamases including OXA-1, inhibitor resistant TEM, or the high 296 
levels of TEM-1 can result in piperacillin/tazobactam resistance, independently of 3rd generation 297 
cephalosporins resistance (14).  298 
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Assuming ceftazidime resistance (Table 5) showed that amikacin is clearly superior in the urinary 299 
source group, whereas for over 80s, amikacin or gentamicin are broadly comparable. Due to the high 300 
resistance rates of co-trimoxazole and ciprofloxacin, meropenem would be suitable if an 301 
aminoglycoside could not be used.  302 

Conclusions 303 

Failure of empiric AB therapy is a regularly encountered clinical problem for infection speicialist. EA 304 
analysis informed by our Bayesian model is a useful tool to support clinician decision making in 305 
escalation of empiric AB therapy for the deteriorating patient when microbiology results are not 306 
available. The model produces a mean resistance rate, with 95% credible intervals for any AB option, 307 
and allows the calculation of a posterior probability that one AB choice is superior to another based 308 
on local ABR patterns.  309 

The clinical application of this model requires the use of data appropriate to the patient group being 310 
treated and an understanding of the uncertainty in the data – this uncertainty will increase when 311 
applying the concept to relatively small patient groups. We conclude that within our region, the 312 
application of whole hospital data to groups with different underlying presentations and AB 313 
exposures such as haemato-oncology patients or paediatric patients is not appropriate. To overcome 314 
this shortcoming of simple EA analysis, we have focused on patient groups that can be determined 315 
before blood culture results are known, based on age, presumed source of infection, ICU patients or 316 
haemato-oncology patients. We have avoided the use of species-specific antibiograms, preferring to 317 
use those based on the mix of species found in the patient group under consideration.  We note the 318 
differences in species proportions between groups appears to explain a significant amount of the 319 
resistance difference. 320 

We anticipate that the results of our EA analysis in a given institution would be utilised by infection 321 
specialists, rather than general clinicians, to avoid potentially inappropriate AB choices, such as the 322 
use of aminoglycosides as a single agent where this contraindicated, and to ensure that alternative 323 
reasons for poor response to empiric AB therapy (e.g. lack of source control) are considered. 324 

Our model can be easily introduced in any institution using the freely available software package, R. 325 
It requires only appropriately cleaned and de-duplicated ABR data which, in many cases, is already 326 
generated regularly to inform antimicrobial guideline development. This process of gathering data 327 
can also be automated, as in our centre, to further reduce the associated workload, and the model 328 
can be run as often as indicated by local demands. We suggest that this model is suitable for 329 
widespread adoption across institutions where infection specialists are making antimicrobial 330 
escalation decisions in the absence of helpful microbiological results.  331 
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Figures 415 

 416 

 417 

Figure 1. Piperacillin/tazobactam resistance in haemato-oncology patients. (Top) A stacked barplot 418 
representing the number of samples in the data. (Middle) A ‘spaghetti plot’ of a random selection of 419 
splines fitted to the data that make up the model, and (Bottom) a ‘ribbon’ plot showing the inferred 420 
posterior mean (black line) with the 66% and  95% credible interval (dark and light blue shaded 421 
areas) with the quarterly rates shown as dots.  422 

 423 
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 424 

Figure 2. All deduplicated GNB BSI isolates (n=10486) (a) Percent Resistance to Ceftazidime reduces 425 
from 12.9% (95% CI 10.9 to 15.3) in 2017 to 10.6% (95% CI 8.8 to 12.9) in 2022. (b) % Resistance to 426 
trimethoprim/sulfamethoxazole reduces from 32.9% (95% CI 28.3 to 36.4) in 2017 to 26.0% (95% CI 427 
22.7 to 29.4) in 2022 428 

 429 

 430 

 431 

 432 
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 433 

Figure 3. Piperacillin/tazobactam resistance for all patients (Top) compared to ICU patients (Middle) 434 
and haemato-oncology patients (bottom) 435 

 436 
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 437 

 438 

Figure 4. Percent resistance to ceftazidime in all isolates (left column) and non-E coli isolates (right 439 
column) located in either (Top Row) ICU  (Bottom row) or Haematology/Oncology. 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2024. ; https://doi.org/10.1101/2023.11.03.23298025doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298025


  452 

 453 

Figure 5.  For ICU patients with assumed resistance to piperacillin/tazobactam.  The estimated 454 
resistance rate to 6 antibiotic options with the 66% and 95% credible interval is shown on the left. 455 
The centre and right plots each show a head to head comparison between one antibiotic (Amikacin 456 
or Ciprofloxacin) and the other five antibiotics. This gives the estimated difference in probability of 457 
resistance, for example, there is 41% probability of higher resistance in amikacin compared to 458 
ciprofloxacin (right), only marginally favouring amikacin, while there is an 81% probability of higher 459 
resistance in co-trimoxazole compared to ciprofloxacin (right) favouring the use of ciprofloxacin.  460 
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 461 

Figure 6. Percent Resistance to gentamicin assuming piperacillin/tazobactam resistance in (Top) all 462 
isolates 27.0% (95% CI 18.5 to 34.5), (Middle) ICU 19.2% (95% CI 7.1 to 37.0), (Bottom) haemato-463 
oncology 33.5% (95% CI 14.6 to 57.5)  464 
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 465 

 466 

 467 

Figure 7. (Top) Cefotaxime resistance in all isolates assuming piperacillin/tazobactam resistance was 468 
stable over time 43.7% (95% CI 33 to 53) PPD = 46.1%.  (Bottom) Cefotaxime resistance in E. coli 469 
assuming piperacillin/tazobactam resistance reduced from 29.2% (95%CI 20.4 to 38.6) to 18.3% 470 
(95%CI 11 to 28) PPD = 95.5% 471 

  472 
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Tables 473 

       

 
 Second Choice Antibiotic 

Meropenem  
Second Choice Antibiotic  
Pipercillin/Tazobactam 

  
Posterior Mean Upper  97.5% CI Lower 2.5% CI 

 
Posterior Mean Upper  97.5% CI 

Lower 2.5% 
CI 

In
iti

al
 C

ho
ic

e 
An

tib
io

tic
 

Meropenem NA NA NA  0.67 0.83 0.47 

Pip.Taz 0.12 0.18 0.07  NA NA NA 

Ceftazidime 0.13 0.21 0.07  0.57 0.68 0.43 

Cefotaxime 0.12 0.18 0.08  0.34 0.44 0.24 

Cefuroxime 0.07 0.11 0.05  0.29 0.36 0.22 

Gentamicin 0.15 0.28 0.07  0.46 0.58 0.33 

Amikacin 0.24 0.46 0.11  0.65 0.89 0.44 

Coamoxiclav 0.05 0.07 0.03  0.26 0.32 0.21 

Ciprofloxacin 0.03 0.07 0.01  0.34 0.45 0.23 

Cotrimoxazole 0.04 0.07 0.02  0.18 0.23 0.13 

         

       

 
 Second Choice Antibiotic 

Ceftazidime  
Second Choice Antibiotic  

Cefotaxime 

  
Posterior Mean Upper  97.5% CI Lower 2.5% CI 

 
Posterior Mean Upper  97.5% CI 

Lower 2.5% 
CI 

In
iti

al
 C

ho
ic

e 
An

tib
io

tic
 

Meropenem 0.62 0.78 0.43  0.89 0.99 0.62 

Pip.Taz 0.47 0.56 0.38  0.44 0.53 0.33 

Ceftazidime NA NA NA  0.78 0.86 0.67 

Cefotaxime 0.51 0.59 0.44  NA NA NA 

Cefuroxime 0.36 0.42 0.31  0.57 0.62 0.52 
Gentamicin 0.45 0.59 0.35  0.45 0.59 0.35 

Amikacin 0.67 0.88 0.47  0.74 0.9 0.58 

Coamoxiclav 0.2 0.24 0.17  0.32 0.37 0.27 

Ciprofloxacin 0.41 0.5 0.33  0.42 0.52 0.33 

Cotrimoxazole 0.18 0.22 0.14  0.42 0.49 0.34 

          

 
 Second Choice Antibiotic 

Cefuroxime  
Second Choice Antibiotic  

Gentamicin 

  
Posterior Mean Upper  97.5% CI Lower 2.5% CI 

 
Posterior Mean Upper  97.5% CI 

Lower 2.5% 
CI 

In
iti

al
 C

ho
ic

e 
An

tib
io

tic
 

Meropenem 0.95 1 0.82  0.45 0.64 0.28 
Pip.Taz 0.63 0.71 0.53  0.27 0.34 0.18 

Ceftazidime 0.97 0.99 0.93  0.33 0.41 0.25 
Cefotaxime 0.99 1 0.98  0.21 0.27 0.16 
Cefuroxime NA NA NA  0.15 0.2 0.12 
Gentamicin 0.58 0.71 0.47  NA NA NA 

Amikacin 0.81 0.94 0.67  0.61 0.78 0.41 
Coamoxiclav 0.53 0.59 0.47  0.13 0.17 0.1 
Ciprofloxacin 0.63 0.74 0.54  0.35 0.43 0.27 

Cotrimoxazole 0.5 0.57 0.43  0.17 0.22 0.12 
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 474 

       

 
 Second Choice Antibiotic 

Amikacin  
Second Choice Antibiotic  

Coamoxiclav 

  
Posterior Mean Upper  97.5% CI Lower 2.5% CI 

 
Posterior Mean Upper  97.5% CI 

Lower 2.5% 
CI 

In
iti

al
 C

ho
ic

e 
An

tib
io

tic
 

Meropenem 0.41 0.62 0.23  0.99 1 0.94 
Pip.Taz 0.18 0.25 0.11  0.91 0.96 0.84 

Ceftazidime 0.2 0.3 0.12  0.87 0.92 0.8 
Cefotaxime 0.16 0.23 0.1  0.9 0.94 0.83 
Cefuroxime 0.1 0.15 0.06  0.85 0.89 0.8 
Gentamicin 0.23 0.37 0.11  0.82 0.89 0.73 

Amikacin NA NA NA  0.85 0.94 0.71 
Coamoxiclav 0.06 0.09 0.03  NA NA NA 
Ciprofloxacin 0.16 0.25 0.08  0.72 0.8 0.64 

Cotrimoxazole 0.05 0.09 0.02  0.78 0.82 0.73 

         

       

 
 Second Choice Antibiotic 

Ciprofloxacin  
Second Choice Antibiotic  

Cotrimoxazole 

  
Posterior Mean Upper  97.5% CI Lower 2.5% CI 

 
Posterior Mean Upper  97.5% CI 

Lower 2.5% 
CI 

In
iti

al
 C

ho
ic

e 
An

tib
io

tic
 

Meropenem 0.23 0.45 0.09  0.58 0.75 0.39 
Pip.Taz 0.31 0.4 0.21  0.37 0.45 0.27 

Ceftazidime 0.45 0.54 0.35  0.43 0.53 0.33 
Cefotaxime 0.29 0.38 0.22  0.67 0.75 0.58 

Cefuroxime 0.24 0.31 0.19  0.46 0.52 0.39 
Gentamicin 0.55 0.66 0.43  0.58 0.71 0.45 

Amikacin 0.66 0.86 0.41  0.45 0.64 0.24 
Coamoxiclav 0.17 0.21 0.13  0.44 0.48 0.39 
Ciprofloxacin NA NA NA  0.58 0.67 0.49 

Cotrimoxazole 0.24 0.3 0.19  NA NA NA 

          
 475 

Table 1. Posterior mean resistance estimates with 95% credible intervals for the whole hospital 476 
population. Tables for haemato-oncology, paediatrics, GI or urinary source infections are in the 477 
supplementary material. 478 

 479 

 480 

 481 

 482 

 483 

 484 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2024. ; https://doi.org/10.1101/2023.11.03.23298025doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298025


Pip/Taz Resistant Amikacin Gentamicin Ciprofloxacin Co-trimoxazole Cefotaxime Ceftazidime 
All (% R with CI) 18% (11 to 25) 27% (18 to 34) 31% (21 to 40) 37% (28 to 45 44% (33 to 53) 47% (37 to 55) 
All (% inferior)  95.0% 73.7% 81.9% 82.8% 72.5% 

ICU (% R with CI) 14% (4 to 33) 19% (7 to 37) 17% (6 to 33) 23% (10 to 40) 65% (41 to 83) 63% (46 to 84) 
ICU (% inferior)  69.8% 39.4% 74.6% 99.9% 45.5% 

Haem (% R with CI) 31% (9 to 55) 32% (7 to 57) 31% (8 to 62) 42% (16 to 74) 58% (32 to 81) 62% (34 to 84) 
Haem (% inferior)  52.8% 49.5% 71.5% 81.7% 41.2% 

Table 2. Escalation antibiogram for piperacillin/tazobactam (pip/taz) resistant isolates showing 485 
resistance rate and the posterior probability of inferiority (PPInf) to the antibiotic choice to the 486 
choice to the immediate left (e.g., Gentamicin v. Amikacin, Ciprofloxacin v. Gentamicin, etc.) across 487 
the whole hospital and in subgroups from ICU and Haematology/Oncology. Numbers in brackets 488 
indicate upper and lower bounds for the 95% credible interval. 489 

 490 

Ceftazidime 
Resistant 

Amikacin Gentamicin Co-trimoxazole Ciprofloxacin Pip/Taz Cefotaxime 

All (% R or I) 21% (12 to 30) 33% (24 to 41) 43% (33 to 52) 45% (35 to 54) 57% (43 to 687) 78% (67 to 86) 
All (% inferior)  97.2% 94.4% 62.4% 92.4% 99.7% 
ICU (% R or I) 17% (4 to 42) 24% (7 to 44) 27% (10 to 49%) 28% (11 to 52) 86% (66 to 98) 88% (70 to 98 

ICU (% inferior)  71.0% 58.3% 53.5% 99.9% 59.7% 
Haem (% R or I) 38% (18 to 62) 39% (19 to 64) 39% (16 to 64) 35% (13 to 61) 77% (54 to 92) 88% (69 to 98) 

Haem (% inferior)  52.3% 50.1% 40.1% 99.2% 84.6% 

Table 3. Escalation antibiogram for Ceftazidime resistant isolates showing resistance rate and the 491 
PPInf to the antibiotic choice to the choice to the immediate left (e.g., Gentamicin v. Amikacin, 492 
Ciprofloxacin v. Gentamicin, etc.) across the whole hospital and in subgroups from ICU and 493 
Haematology/Oncology. Numbers in brackets indicate upper and lower bounds for the 95% credible 494 
interval. 495 

 496 

Pip/Taz Resistant Amikacin Gentamicin Ciprofloxacin Co-trimoxazole Cefotaxime Ceftazidime 
All (% R or I) 18% (11 to 25) 27% (18 to 34) 31% (21 to 40) 37% (28 to 45 44% (33 to 53) 47% (378 to 55) 

All (% inferior)  95.0% 73.7% 81.9% 82.8% 72.5% 
Over 80 (% R or I) 16% (5 to 29) 19% (7 to 34) 39% (22 to 54) 39% (25 to 55) 37% (20 to 53) 43% (28 to 56) 

Over 80 (% inferior)  60.0% 94.6% 48.2% 43.6% 67.3% 
U/R Source (% R or I) 13% (3 to 27) 29% (13 to 46) 33% (16 to 53) 39% (22 to 59) 29% (15 to 47) 36% (19 to 59) 
U/R Src (% inferior)  93.2% 63.5% 68.3% 20.9% 68.4% 

Table 4. Escalation antibiogram for piperacillin/tazobactam resistant isolates showing resistance rate 497 
and the posterior probability of inferiority (PPInf) to the antibiotic choice to the the choice to the 498 
immediate left (e.g., Gentamicin v. Amikacin, Ciprofloxacin v. Gentamicin, etc.). Data for whole 499 
hospital, and subgroups of patients over 80 years, and infections with urine/renal source. Numbers 500 
in brackets indicate upper and lower bounds for the 95% credible interval. 501 

 502 

Ceftazidime Resistant Amikacin Gentamicin Co-trimoxazole Ciprofloxacin Pip/Taz Cefotaxime 
All (% R or I) 21% (12 to 30) 33% (24 to 41) 43% (33 to 52) 45%(35 to 54) 57% (43 to 687) 78% (67 to 86) 

All (% inferior)  97.2% 94.4% 62.4% 92.4% 99.7% 
Over 80 (% R or I) 21% (9 to 35) 25% (11 to 40) 44% (27 to 60) 44% (24 to 63) 49% (33 to 66) 77% (62 to 88) 

Over 80 (% inferior)  68% 94.3% 52.7% 60.9% 99.3% 
U/R Source R or I) 13% (2 to 33) 34% (15 to 54) 48% (24 to 72) 57% (35 to 76) 49% (29 to 72) 80% (55 to 96) 

U/R Src (% inferior)  93.7% 80.8% 72.2% 28.3% 96.6% 

Table 5. Escalation antibiogram for ceftazidime resistant isolates showing resistance rate and the 503 
posterior probability of inferiority (PPInf) to the antibiotic choice to the the choice to the immediate 504 
left (e.g., Gentamicin v. Amikacin, Ciprofloxacin v. Gentamicin, etc.). Data for whole hospital, 505 
andsubgroups of patients over 80 years, and infections with urine/renal source. Numbers in brackets 506 
indicate upper and lower bounds for the 95% credible interval. 507 
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