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Abstract 

In many laboratory assays that measure immunological quantities, a portion of the 

measured values fall below a limit of detection (LOD). This is also the case for the 

hemagglutination inhibition assay (HAI), a common method used to quantify antibodies 

in influenza research. The conventional approach is to treat values below the LOD as 

either equal to the LOD or LOD/2, which can introduce potential biases. These biases can 

become more pronounced when calculating compound measures such as the difference 

between post-vaccination and pre-vaccination antibody titers (titer increase). To address 

this issue, we conducted simulations using LOD measurements with LOD/2 values as the 

standard imputation. We then developed a new method to adjust coefficient estimates 

that account for the censored nature of measurements below the LOD. Applying this new 

method to data from an influenza vaccine cohort study, we compared the impact of 

vaccine dose on the titer increase of HAI. 

Author Summary 

Analysis of measurements obtained from widely used antibody assays frequently 

overlooks the underlying data structure, leading to potential biases in the results. To 

address this issue, we have developed a method that effectively reduces these biases. 

  



Introduction 

The approval process for a new vaccine is often time-consuming.[1] Before undertaking 

costly and lengthy human trials, many vaccine candidates are compared using 

immunological markers. These markers serve as predictive indicators of vaccine efficacy 

(correlates of protection), enabling the allocation of resources to the most promising 

candidates.[2,3] 

Antibodies are widely recognized as the most common correlates of protection. [4] 

Consequently, the change in antibody measurements before and after vaccination, also 

known as titer increase, is as an important indicator in various vaccine studies.[5–8] 

Antibody measurements, and many other immunological assays, produce discrete values 

in the form of dilution levels. These assays often have limits of detection (LOD) or 

quantification (LOQ), placing limits on the range of sample values that can be reliably 

measured. Specifically, values below an LOQ cannot be measured at the same precision 

as values above the threshold, while values below an LOD cannot be assigned a value by 

the assay. [9–11] Although many assays also have an upper LOD/LOQ, measures at the 

upper limit rarely occur in practice. 

In studies of hemagglutination inhibition (HAI) assays for influenza antibodies, 

most studies treat the measured values as precise and impute all measurements below 

the LOD with either the LOD value or LOD/2 (standard imputation).[12] These values 

are then used for statistical analyses, which can compound the bias induced by constant 

imputation. For example, titer increase, defined as the ratio of post-vaccination titer to 

pre-vaccination titer, is often used in influenza vaccine studies to measure change from 

baseline, and can be compared to analyze the relative effects of interventions (e.g. placebo 

vs. vaccine, or vaccine A vs. vaccine B). 



Researchers conduct statistical analyses to compare outcomes between study 

groups, with a particular focus on controlling for covariates known to influence the 

outcome, such as age. A specific example of this is the implementation of a linear 

regression model to assess the ratio of post- to pre-vaccination titers for two different 

types of vaccines (vac), while also controlling factors of age (age) and BMI (bmi). The 

equation would be given by log(𝑡𝑖𝑡𝑒𝑟𝑝𝑜𝑠𝑡/𝑡𝑖𝑡𝑒𝑟𝑝𝑟𝑒) = log(𝑡𝑖𝑡𝑒𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) = 𝛽0 + 𝛽1 ∗

𝑣𝑎𝑐 + 𝛽2 ∗ 𝑎𝑔𝑒 + 𝛽3 ∗ 𝑏𝑚𝑖  and the coefficient 𝛽1  provides an estimate of the different 

impact of vaccines being compared. However, the standard LOD imputation introduces 

bias in the titer values leading to biased results of the model coefficients.[13–16] 

Previous literature on data with LODs is mostly theoretical, and does not include 

examples with real data. [15,17,18] In this study, we used simulations to explore potential 

biases induced by the LOD, and propose and approach for adjustment to mitigate these 

issues. We also applied our method to analysis of HAI titers from a human influenza 

vaccine cohort study. [19] 

  



Methods 

Human cohort and simulated data 

We used data from prior years of an ongoing vaccination study, which has been described 

in previous publications.[7,8,10] Briefly, from 2014–2018, the study recruited volunteers 

who had not yet received an influenza vaccine for the current season. Individuals under 

age 65 were given the standard dose (SD) FluZone vaccine (Sanofi Pasteur), while 

individuals aged 65 or older were given the choice between the SD vaccine or the 

recommended high dose (HD) FluZone vaccine. We limited our analyses to those 

individuals 65 or older, in order to accurately compared the two vaccines. Investigators 

collected samples before administering vaccinations and obtained follow-up samples 

with a target date of 21-28 days after the vaccinations. The serum samples were then 

analyzed using HAI assays as described in a prior study. [10] 

HAI titer data 

The main outcome measure we considered was the titer increase after vaccination, 

calculated as the logarithm of the ratio between post-vaccination and pre-vaccination 

titers: 

log(titer increase) = log(post-vaccination titer/pre-vaccination titer). 

We use the notation log(𝑥) to represent the natural logarithm. In our dataset, the lowest 

dilution limit was set at 1:10, and subsequent dilutions were made in 2-fold increments 

(1:20, 1:40, and so on) up to the highest dilution of 1:20480. Measurements are generally 

reported as the reciprocal titer, such as 10, 20, 40, and so on. Any measurement that fell 

below the limit of detection (LOD) at the lowest reciprocal titer (10) was recoded as 5 

using the standard imputation method. Since there were no values at the upper limit of 



the assay in our observed data (the highest titer was 5120), and these values are generally 

rare in similar studies, we only considered the lower LOD in our study. 

Simulated data 

In our simulations, we generated data that resembles actual HAI assay data. We also 

computed the titer increase and used the classic linear regression model for the estimation 

of variables’ coefficients. In this simulation, we chose one intervention and one covariate 

motivated by the real data described above. The intervention was a binary variable (HD 

or SD influenza vaccine), which we represented as an indicator variable where 0 indicates 

SD and 1 indicates HD. We chose to simulate age as an integer-valued covariate. Thus, 

our regression model was log(𝑡𝑖𝑡𝑒𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) = 𝛽0 + 𝛽𝑣 ∗ 𝑣𝑎𝑐𝑐𝑖𝑛𝑒 + 𝛽𝑎 ∗ 𝑎𝑔𝑒. 

We generated pre-vaccination antibody titer values with log-normal distributions 

(which we call the raw titers). The means of these distributions were chosen to produce 

five percentages (10%, 30%, 50%, 70%, 90%) of values that would be below the LOD (10). 

Next, we discretized all values by rounding them down to the nearest dilution level. For 

instance, any value between 20 and 40 was coded as 20 (referred to as Raw+bin). Finally, 

we assigned a value of 5 to any measurement below the assay’s limit of detection of 10 

(referred to as Raw+bin+lod5). 

We then calculated post-vaccination titers for each of the three types of pre-titers 

(raw, Raw+bin, or Raw+bin+lod5). We then specified the expected titer increase for each of 

the vaccine groups. After setting the mean of the pre-vaccination titer distribution and 

the expected titer increase value, we calculated the necessary mean for the post-

vaccination titer distribution and use these values in our simulations. 

As HD is expected to induce a higher titer increase than SD,[20] we assumed the 

log(titer increase)  for HD and SD to be log(12)  and log(6) , respectively, as a 



representative example. So, the difference of titer increase between HD and SD (true 

coefficient value) was log(12) − 𝑙𝑜𝑔(6) = 0.7. Similarly, as an example, we chose the 

coefficient value of age to be -0.03 per 1 year older, considering that the older population 

may have a lower titer increase.[10,21] Sensitivity analyses for these parameters are 

provided in the supplementary materials. 

The true values of HAI titer values that we observe to be below the LOD are 

unknown, so we conducted additional simulations to better explore potential bias. More 

specifically, we performed 500 simulations for each of the three types of simulated 

datasets (i.e., raw, Raw+bin, or Raw+bin+lod5), with each simulation consisting of 1000 

samples. Next, we separately fit linear models to the three types of simulated datasets 

using both the standard imputation method and the method we proposed (described in 

the next section). Finally, we compared the coefficient estimates obtained from these two 

methods. 

Adjustment for Bi-Censoring (ABC) method 

Often, pre- and post-vaccination antibody titers are measured for different scenarios (e.g., 

two types of vaccines) and the ratio (log difference) of the titers, called the titer increase, 

is compared using classical linear regression models or other standard statistical 

methods. However, censored values are common in HAI assays due to the limit of 

detection (LOD). This bi-censoring phenomenon affects both pre-vaccination and post-

vaccination HAI titers. Without proper adjustments, models may treat values below the 

LOD as fixed and accurate, leading to biased coefficient estimates. 

We found the titer increase had bi-censoring issues, where the values of titer 

increase may be treated as interval censors.[13] Therefore, to address this, we developed 

an adjustment method called Adjustment for Bi-Censoring (ABC). HAI antibody titers that 

show up as negative in the assay, indicating values below the LOD, can span a range 



from just below the LOD to zero. Due to maternal immunity and cross-reactivity, it is rare 

for individuals to have completely zero immunity to a specific strain of influenza 

virus.[22,23] The low bound of the range is more likely to be a low but non-zero level.[24] 

Therefore, we assume those values below LOD could be any value between 1:10−5 to 

1:10. The threshold of 10−5 was chosen so that the range covered the majority part of the 

log-normal distribution for those values below LOD. Since the pre-vaccination and post-

vaccination HAI titer values were left-censored, and values below the LOD were within 

a range, the estimation of coefficients for the titer increase can be approached as an 

interval censoring problem. The log-likelihood function can be maximized to obtain the 

coefficient estimates: 

𝑙𝑙 = ∑ log

𝑁−𝑛𝑐

𝑖=1

[𝑓(𝑥𝑖, 𝑦𝑖)] +∑log

𝑛𝑐

𝑗=1

[∫ 𝑓
ℎ𝑖𝑔ℎ

𝑙𝑜𝑤

(𝑥𝑗 , 𝑦)𝑑𝑦] 

where x is the intervention; y is the titer increase; N is the total sample size; 𝑛𝑐 are values 

below LODs; log[𝑓(𝑥𝑖, 𝑦𝑖)] is the log of the density of normal distribution with mean 

equal to 𝜇 , variance equal to 1; log [∫ 𝑓
ℎ𝑖𝑔ℎ

𝑙𝑜𝑤
(𝑥𝑗 , 𝑦)𝑑𝑦]  is the cumulative probability 

function between the high and low bound of the same normal distribution. 

To compare the proposed ABC method with the standard imputation method 

(benchmark), we calculated the squared error loss (SEL). The SEL is the sum of the 

variance and squared bias, which is derived from the difference between the coefficient 

assumption 𝛽 and the estimated coefficient �̂� using the squared error loss (bias-variance 

decomposition).[25,26] 

𝑆𝐸𝐿 = 𝐸 [(𝛽 − �̂�)
2
]

= (𝛽 − 𝐸[𝑓(Data)])2 + 𝐸 [(𝐸[𝑓(Data)] − 𝑓(Data))
2
]

  "Squared bias"  "Variance"

 



Sensitivity analyses 

We conducted sensitivity analyses by varying the sample size of simulated data (N = 100, 

500, 1000, 1500), and two different coefficient assumptions (log(24/6), log(6.5/6)) for the 

difference of titer increase between two vaccines, as well as the impact of age 

(Supplementary material). 

Model Implementation 

All models and analyses were implemented in R.[27] To maximize the log-likelihood, we 

used the Newton-Raphson method and the maxLik package.[28,29] All the code and data 

required to reproduce the results are provided in the supplementary material. 

  



Results 

We generated a series of simulated datasets with LOD percentages at five levels (10%, 

30%, 50%, 70%, 90%), and for each level, we repeated the simulation 500 times. Figure 1-

A visualizes a dataset at one LOD level. The simulated pre- and post-vaccine titers 

demonstrated the effects of binning and LOD imputation on the central tendency and 

dispersion of the data. Figure 1-B to D show the simulated data in all three scenarios. The 

first scenario (Figure 1-B) is the raw data with continuous values; the second scenario 

(Figure 1-C) is the raw+bin data with discrete integers; the last scenario (Figure 1-D) is 

the raw+bin+lod5 data where titers below LOD (1:10) were recoded as 1:5. For both HD 

and SD groups, the raw+bin+lod5 data had a higher mean and small variance of titers 

than the other two scenarios. Figure 1-E represents the titer increase calculated as the 

ratio between post-vaccine and pre-vaccine titers. The distribution of titer increase 

changed in raw+bin+lod5 data of both HD and SD groups because of the standard 

imputation method. 



 

Figure 1: Simulated HAI titer and LOD. A, example of a simulated log-normal 

distributions with a total sample size equal to 1000 with about 30% values below LOD; 

B, the simulated raw data; C, the simulated raw+bin data (binning raw data into 

discrete integers); D, the simulated raw+bin+lod5 data, introducing the LOD issue 

(<1:10 coded as 1:5) into the simulated raw+bin data; E, HAI titer increase for both HD 

and SD vaccines using the three versions of simulated data. 

In our assumptions, we set the parameter for the difference in titer increase 

between the two vaccines to 0.7 ( 𝑙𝑜𝑔(𝐻𝐷𝑡𝑖𝑡𝑒𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒/𝑆𝐷𝑡𝑖𝑡𝑒𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) = 𝑙𝑜𝑔(12/6) ), 

reflecting a higher titer increase for the HD vaccine compared to the SD vaccine. 

Additionally, we assigned a parameter value of -0.03 for age (per 1-year unit increase), 

taking into account the lower immune response typically observed in the elderly 

population. (sensitivity analyses are provided in supplementary material). By fitting a 



classic linear regression model to the three versions of simulated data, we observed that 

the linear regression models using the raw and raw+bin data produced results that were 

close to the assumed values (Figure 2 and 3, black and yellow bars). However, when the 

data had LOD issues (raw+bin+lod5 data), the standard imputation method resulted in 

biased coefficient estimations for the model. (Figure 2 and 3, blue bars). The magnitude 

of bias increased as the proportion of data below the LOD increased. 

 

Figure 2: Coefficient estimates of the difference of titer increase (HD vs. SD vaccine). We 

generated 500 datasets, each with a sample size (N) of 1000, to estimate the mean 

coefficient and its 95% confidence interval. We used three types of data in our analysis: 

raw data, which represents continuous titer values; raw + bin data, which represents 

discrete titer values; and raw + bin + lod5 data, which represents discrete titer values 



with LOD standard imputation. The Adjustment for Bi-Censoring (ABC) method was 

applied to the raw + bin + lod5 data for adjustment. 

 

Figure 3: Coefficient estimates of the age (every 1-year increase). There were 500 

datasets, each had N = 1000 as the sample size, for coefficient mean and 95% confidence 

interval estimation. We used three types of data in our analysis: raw data, which 

represents continuous titer values; raw + bin data, which represents discrete titer values; 

and raw + bin + lod5 data, which represents discrete titer values with LOD standard 

imputation. The Adjustment for Bi-Censoring (ABC) method was applied to the raw + 

bin + lod5 data for adjustment. 



Bias–variance trade-off 

The ABC method yielded results with reduced bias compared to the standard imputation 

method. However, it was accompanied by higher variance, which can be attributed to the 

increased proportion of values below the LOD. Thus, we further explored the Bias–

variance trade-off (Figure 4). As the sample size increased, the sum of squared bias and 

variance decreased. However, it increased as the proportion of values below the LOD 

(limit of detection) increased. The ABC method had less bias-variance score than the 

standard imputation method in most scenarios, except when the sample size was small. 

This is because the standard imputation method ignored the uncertainty due to LOD. 

 

Figure 4: Bias–variance trade-off score with different LOD and sample size settings. To 

calculate the score, we simulated 500 datasets with multiple scenarios, including 



different sample sizes (N = 100, 500, 1000, 1500) and proportions of values below LOD 

(10%, 30%, 50%, 70%, 90%). 

Apply the ABC method to the human cohort data 

We also explored the ABC and the standard imputation method with the real human 

cohort data to compare their results. For vaccine homologous (HAI titer against the same 

strain included in the vaccine) comparisons, the ABC and standard method provided 

different results for several strains (Table 1). For example of H1N1-California-2009 and 

H1N1-Michigan-2015 strains, the estimation of coefficients changed from significant in 

the standard imputation method to non-significant with the ABC method. For vaccine 

heterologous (HAI titer against a strain not included in the vaccine) comparisons, these 

two methods provided similar results, but the ABC method had wider confidence 

intervals (Table 2). For example of H1N1-Brisbane-2007 strain, the proportion of pre-

vaccination titer below the LOD was 100%. Therefore, the ABC method provided a wide 

interval. For the H3N2-Hong Kong-2014 strain, the result was significant with the ABC 

method, but was non-significant with the standard imputation. 

Table 1: Comparison of model estimations on selected homologous responses 

Vaccine strain LOD Standard  method ABC method 

H1N1-California-2009 26.2% 0.31, 95%CI: 0.11 to 0.51 0.23, 95%CI: -0.02 to 0.48 

H1N1-Michigan-2015 7% 0.45, 95%CI: 0.01 to 0.89 0.44, 95%CI: -0.13 to 1.01 

Table 2: Comparison of model estimations on selected heterologous responses 

Vaccine strain Tested strain LOD Standard  method ABC method 

H1N1-Brisbane-2018 H1N1-Brisbane-2007 100% -0.22, 95%CI: -0.55 to 0.1 -0.49, 95%CI: NaN to NaN 

H3N2-Kansas-2017 H3N2-Hong Kong-2014 44.4% -0.56, 95%CI: -1.31 to 0.19 -0.7, 95%CI: -1.27 to -0.14 

H3N2-Texas-2012 H3N2-Hong Kong-1968 41.3% -0.17, 95%CI: -0.33 to -0.01 -0.41, 95%CI: -1 to 0.17 



Sensitivity analyses 

We conducted sensitivity analyses by varying the sample size of the simulated data, and 

changing the assumptions of coefficients (titer increase and age). Across all scenarios, we 

consistently observed less biased estimates with the ABC method. Detailed results can be 

found in the supplementary material. 

  



Discussion 

Our ABC method addresses the issue of measurements below the LOD, which is 

applicable beyond influenza HAI titers. Most antibody assays have an LOD, and 

observations below this limit are common in practice. [5–11] In a human influenza 

vaccine cohort, we observed relatively low proportions of LOD measurements in 

homologous responses. However, in heterologous responses, the proportions of LOD 

measurements were significantly higher. Our findings demonstrate that failing to 

properly account for LOD measurements can lead to biased results. 

We proposed the ABC method that treated values below the LOD as censored, and 

incorporates this information into the estimated likelihood. Our ABC method reduces the 

bias of coefficient point estimates, while incorporating the additional uncertainty induced 

by censored values into confidence intervals, providing a more honest assessment of 

model error. Comparing ABC to the standard constant imputation method, as the 

proportion of LOD increased, the bias of coefficient estimations with the standard 

imputation method increased, but the estimations with the ABC method did not. In 

addition, we aimed to propose an adjustment that had low bias and variance.[25,26] 

While the standard imputation method can often yield estimates with smaller variance, 

the smaller variance is dishonest, as it treats all values below the LOD as if they were 

perfectly observed at the same constant level, reducing uncertainty in model estimates. 

The variance of coefficients can depend on 1) the proportion of LOD in the data, 2) the 

total sample size of the data, and 3) the effect size of the intervention. However, as the 

sample size increases, the variance of the two methods was similar even for data with 

many values below the LOD. 

While the ABC method can generate unbiased coefficient estimates, our method 

has several model limitations. First, sensitivity analyses revealed that when the 



proportion of values below LOD was high, the ABC method could result in wide 

confidence intervals, leading to inconclusive results. Second, the current version of the 

ABC method does not account for hierarchical structured data, which is an area we aim 

to address in future research. Finally, our method requires the use of standard numerical 

optimization procedures, which are slower and more computationally intensive than the 

fast methods used for standard linear models. 

Our findings may benefit antibody comparisons between vaccine candidates. We 

recommend the use of our ABC method, which addresses the concern of LOD, as an 

alternative to the standard method. 
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