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Abstract 

Background: State-of-the-art machine learning (ML) artificial intelligence methods are 

increasingly leveraged in clinical predictive modeling to provide clinical decision support 

systems to physicians. Modern ML approaches such as artificial neural networks (ANNs) and 

tree boosting often perform better than more traditional methods like logistic regression. On 

the other hand, these modern methods yield a limited understanding of the resulting 

predictions. However, in the medical domain, understanding of applied models is essential, in 

particular, when informing clinical decision support. Thus, in recent years, interpretability 

methods for modern ML methods have emerged to potentially allow explainable predictions 

paired with high performance.  

Methods: To our knowledge, we present in this work the first explainability comparison 

of two modern ML methods, tree boosting and multilayer perceptrons (MLPs), to traditional 

logistic regression methods using a stroke outcome prediction paradigm. Here, we used 

clinical features to predict a dichotomized 90 days post-stroke modified Rankin Scale (mRS) 

score. For interpretability, we evaluated clinical features’ importance with regard to predictions 

using deep Taylor decomposition for MLP, Shapley values for tree boosting and model 

coefficients for logistic regression.  

Results: With regard to performance as measured by AUC values on the test dataset, 

all models performed comparably: Logistic regression AUCs were 0.82, 0.82, 0.79 for three 



different regularization schemes; tree boosting AUC was 0.81; MLP AUC was 0.81. 

Importantly, the interpretability analysis demonstrated consistent results across models by 

rating age and stroke severity consecutively amongst the most important predictive features. 

For less important features, some differences were observed between the methods.  

Conclusions: Our analysis suggests that modern machine learning methods can 

provide explainability which is compatible with domain knowledge interpretation and traditional 

method rankings. Future work should focus on replication of these findings in other datasets 

and further testing of different explainability methods. 
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Introduction 

Machine learning (ML) techniques are state-of-the-art in predictive modeling in fields like 

computer vision and autonomous navigation [1]. Increasingly, these tools are leveraged for 

clinical predictive modeling and clinical decision support, where clinical values are used to 

predict a clinical status, e.g. a diagnosis, outcome or risk [2,3]. Here, newer machine learning 

techniques - we will refer to them as modern machine learning techniques in this work - 

including artificial neural nets (ANN), especially deep learning (DL), and ensemble models 

such as tree boosting have often shown higher performance than traditional machine learning 

techniques such as linear or logistic regression, e.g. [4–8].  

However, a common criticism of these modern techniques is that while they might 

increase model performance they do not provide the possibility to explain the resulting 

predictions [9]. In contrast, traditional techniques allow explanations by various means and 

this approach has been the backbone of explainable clinical predictive modeling to date [10]. 

The necessity of interpretable ML systems are of particular concern in the medical domain. 
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An explainable AI system is essential to provide: 1) Interpretation and safe-check of the 

acquired results during development [11]. 2) Better assessment of safety and fairness of 

medical products, especially regarding bias, during the regulatory process [12]. 3) Domain 

knowledge supported interpretation leading to increased trust by the physicians, other 

healthcare professionals, and patients [12]: Some argue that black box approaches are 

unacceptable for clinical decision support from the physician´s point-of-view [13] and from the 

patient's point-of-view [14]. Thus, currently, researchers and developers are facing an 

unfortunate trade-off: either to use methods with potentially higher performance or to use 

methods providing explainability to comply with ethical and regulatory requirements [9].  

 Fortunately, interpretability methods tailored to modern machine learning algorithms 

have emerged lately, therefore potentially allowing high performance and explainable models. 

For one, in the last few years several techniques have been developed to open the most 

notorious black box, namely artificial neural networks and provide explainable models [11]. 

Moreover, tree boosting provides high performance clinical predictive modeling and also allow 

the calculation of feature importance and ranking, e.g. Lundberg et al [15]. However, to our 

knowledge, these approaches have not yet been compared to the traditional methods in terms 

of interpretability for clinical predictive modeling. 

In the present work, we thus compared the above mentioned two modern ML methods, 

ANNs and tree boosting, to traditional methods with regard to explainability. We chose a well-

characterized stroke clinical outcome paradigm. Here, available clinical features such as age, 

the severity of the stroke or information about treatment are used to predict the 3 months post-

stroke outcome. Many replications in the past have established main factors driving the 

prediction, namely age and stroke severity, e.g. [16–19]. Thus, within this paradigm, modern 

machine learning explanations can be interpreted against a baseline. Concretely, we used a 

multilayer perceptron (MLP) with deep Taylor decomposition as an example for an explainable 

ANN approach [20], the CATBOOST algorithm with Shapley Additive exPlanations (SHAP) 

values as an example for explainable tree boosting [15] and compared performance and 
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explainability with different versions of regularized logistic regression for a binary outcome 

(GLM, LASSO, and Elastic Net) .  

 

Methods 

Patients and clinical metadata pre-processing 

In a retrospective analysis, patients with acute ischemic stroke from the 1000plus study were 

included [18]. The study was approved by the local ethics committee in accordance with the 

Helsinki declaration and all patients gave written informed consent. Patients were triaged into 

receiving iv-tissue-plasminogen-activator (tPA) for thrombolysis therapy or conservative 

therapy. The modified Rankin Scale (mRS), representing the degree of disability or 

dependence in the daily activities, was assessed for each patient 3 months post-stroke via a 

telephone call. The available database consisted of 514 patients who received imaging at 3 

imaging time points. Of these, 104 were lost-to-follow-up and had no mRS values. 1 patient 

had to be excluded due to values outside of the possible parameter range. Moreover, 95 

patients had to be excluded due to infratentorial stroke and no visible DWI lesions. Specific 

further inclusion criteria of our sub-study were a ratio of at least 1 to 4 for binary variables 

(absence/presence) and no more than 5% missing values resulting in the final number of 314 

patients and the following clinical parameters for the predictive models: age, sex, initial NIHSS 

(National Institute of Health Stroke Scale; measuring stroke severity), history of cardiac 

disease, history of diabetes mellitus, presence of hypercholesterolemia, and thrombolysis 

treatment. Missing values were imputed using mean imputation. The continuous parameters 

were centered using zero-mean unit-variance normalization. For a summary of the patients' 

clinical features and their distribution, see Table 1. 
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Clinical information Value  

Median age (IQR) 72 (15) 

Sex (Females/ Males) 196 / 118 

Median initial NIHSS (IQR) 3 (5) 

Cardiac history (yes/ no) 84 / 230 

Diabetes mellitus (yes/ no) 79 / 235 

Hypercholesterolemia (yes/ no) 182 / 132 

Thrombolysis (yes / no) 74 / 240 

 

Table 1. Summary of the clinical data. The table summarizes the distribution of the selected 

clinical data covariates acquired in the acute clinical setting. NIHSS stands for National 

Institutes of Health Stroke Scale; IQR indicates the interquartile range. 

 

Data Accessibility 

Data cannot be shared publicly because of data protection laws. Data might be available from 

the institutional ethics committee of Charité Universitätsmedizin Berlin (contact via 

ethikkommission@charite.de) for researchers who meet the criteria for access to confidential 

data. The code used in the manuscript is available on Github 

(https://github.com/prediction2020/explainable-predictive-models). 

 

Outcome prediction supervised machine learning framework 

In a supervised machine-learning framework, the clinical parameters (Table 1) were used to 

predict the final outcome of stroke patients in terms of dichotomized 3-months post-stroke 

mRS, where mRS ϵ {0,1,2} indicates a good outcome (i.e. class label 𝑦𝑦𝑖𝑖 = 0 for a given 

observation i) and mRS ϵ {3,4,5,6} indicates a bad outcome (i.e. class label 𝑦𝑦𝑖𝑖 = 1 for a given 

observation i). The applied dichotomization resulted in 88 positive (i.e. bad outcome) and 226 

negative (i.e. good outcome) classes.  

 



Feature multicollinearity 

Importantly, methods for feature ranking can be influenced by feature multicollinearity. 

Particularly, Beta weights in regression analysis can be erroneous in case of multicollinearity 

[19,20] and certain applications of feature importance calculation for tree boosting are 

simplified under the assumption of feature independence. To ensure an unbiased comparison 

of the models interpretability we estimated multicollinearity of the features using the variance 

inflation factor (VIF) [21].  The chosen features in the analysis demonstrated negligible 

multicollinearity with VIFs < 1.91 (Age: 1.15; Sex: 1.91, NIHSS: 1.28; Cardiac history: 1.33; 

Diabetes: 1.36; Hypercholesterolemia: 1.74; Thrombolysis: 1.50). This makes our stroke 

outcome paradigm particularly suited to compare explainability. 

 

Predictive modeling and Interpretability 

In this study, machine-learning (ML) methods were applied to predict the final outcome based 

on clinical data. In the context of tabular data as in the given study, the interpretability of the 

resulting models corresponds to a rating of feature importance. The interpretability frameworks 

suggested in this study are tailored to the models and therefore indicate the relative 

contribution of the features to the respective model prediction. The different ML algorithms 

and the corresponding interpretability derivations are described as follows. 

 

Traditional (linear) ML frameworks 

1. Generalized linear model (GLM) 

GLM is a generalization of linear regression that allows for a response to be 

dichotomous instead of continuous. Hence the model predicts the probability of a bad 

outcome (vs. good outcome) based on a set of explanatory variables according to the 

following relation: 

𝑃𝑃(𝑂𝑂|𝑋𝑋�) =  
1

1 + 𝑒𝑒−∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
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where 𝑃𝑃(𝑂𝑂|𝑋𝑋�) is the probability for a good or a bad outcome (𝑂𝑂 = 0 or 𝑂𝑂 = 1 

respectively) given the vector of corresponding covariates 𝑋𝑋�. β stands for the model 

parameterization. The objective function for the optimization problem is defined by 

maximum likelihood estimation (MLE): 

𝐽𝐽��̅�𝛽� = 𝑙𝑙𝑙𝑙�𝑃𝑃(𝑂𝑂𝑖𝑖|𝑋𝑋�𝑖𝑖, �̅�𝛽)
𝑁𝑁

𝑖𝑖=1

 

where 𝐽𝐽��̅�𝛽� stands for the objective function for the given model parametrization, 

𝑃𝑃(𝑂𝑂𝑖𝑖|𝑋𝑋�𝑖𝑖, �̅�𝛽) is the predicted outcome probability for the given covariates 𝑋𝑋�𝑖𝑖 and model 

parametrization β and N is the number of observations. In this formulation, this special 

case of a GLM is also known as logistic regression. 

2. Lasso 

Lasso, standing for least absolute shrinkage and selection operator, provides the L1 

regularized version of GLM. An L1 penalization of the model parametrization reduces 

overfitting of the model and is applied by the addition of the L1 regularization term to the 

objective function: 

𝐽𝐽𝐿𝐿��̅�𝛽� = 𝐽𝐽��̅�𝛽� + 𝛼𝛼��̅�𝛽� 

where 𝐽𝐽𝐿𝐿��̅�𝛽� stands for the Lasso objective function and α is the scaling factor 

hyperparameter. 

3. Elastic Nets 

Similarly to Lasso, elastic net provide a regularized variate of the GLM. Here two types 

of regularization terms are added to the objective function that provide L1 and L2 

penalization of the model parametrization respectively: 

 

𝐽𝐽𝐸𝐸𝑁𝑁��̅�𝛽� = 𝐽𝐽��̅�𝛽� + 𝛼𝛼��̅�𝛽� + 𝛾𝛾�𝛽𝛽2���� 



 

where 𝐽𝐽𝐸𝐸𝑁𝑁��̅�𝛽� stands for the elastic nets objective function and α and γ are the scaling 

factors hyperparameters.  

 

For the three linear models, the interpretability of the models was deduced using the 

resulted model parametrization. Hence, the rating of the features was derived by the values 

of the model coefficients β. As outlined above, this is sufficient since our features do not exhibit 

collinearity [20]. 

 

Modern (nonlinear) ML frameworks 

4. Tree boosting (CatBoost) 

Treeboosting solves the described classification problem by producing a prediction 

model as an ensemble of weak classification models, i.e. classifiers. As an ensemble 

method, the algorithm builds many weak classifiers in the form of decision trees and 

then integrates them into one cumulative prediction model to obtain better performance 

than any of the constituent classifiers. The prediction is then given using Kadditive 

functions: 

𝑃𝑃(𝑂𝑂|𝑋𝑋�) = �𝑓𝑓𝑘𝑘(𝑋𝑋�),𝑓𝑓𝑘𝑘 ∈ ℱ
𝐾𝐾

𝑘𝑘=1

  

where ℱ = �𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥)�(𝑞𝑞:ℝ𝑚𝑚 →  𝑇𝑇, w ϵℝ𝑇𝑇) is the space of regression trees. Here q 

denotes the structure of each tree and T is the number of leaves in the tree. Each 

fxrepresents an independent tree structure q and leaf weights w. The output of the 

regression trees is a continuous score represented by wi for leaf i. Each observation is 

classified using each constituent tree to the corresponding leafs and the outcome 

prediction 𝑃𝑃(𝑂𝑂|𝑋𝑋�) is finally calculated as the cumulative sum of scores of the 
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corresponding leafs. The objective function for optimization constitutes of the convex 

loss function, here chosen as logistic function, and a regularization component: 

𝐽𝐽𝑐𝑐(𝜑𝜑) = �𝑙𝑙(𝑦𝑦𝑖𝑖′,𝑦𝑦𝑖𝑖) + �Ω(𝑓𝑓𝑘𝑘)
𝑘𝑘𝑖𝑖

 

where the convex loss is given by : 

𝑙𝑙(𝑦𝑦𝑖𝑖′ = 𝑃𝑃(𝑂𝑂|𝑋𝑋�),𝑦𝑦𝑖𝑖) =
−∑ 𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 log(𝑦𝑦𝑖𝑖′) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦𝑖𝑖′))𝑁𝑁

𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

     and the regularization component is given by :   

Ω(𝑓𝑓) = 𝛾𝛾𝑇𝑇 +
1
2
𝜆𝜆‖𝑤𝑤‖2 

Here 𝜑𝜑 represents the corresponding model parametrization. In this study we 

used the CATBOOST module to implement the tree boosting model allowing to 

successfully integrate both numerical and categorical features [22].  

In the context of tree boosting models, SHapley Additive exPlanations (SHAP) 

values construct a robust unified interpretability framework, breaking down the 

prediction to show the impact of each input feature [23]. The SHAP values attribute to 

each feature the corresponding change in the model prediction when conditioning on 

that feature, compared with the prediction with an unknown feature input. The overall 

rating of the feature contribution to the model is then achieved by aggregating the 

SHAP values over all observations.  

5. MLP 

A multilayer perceptron (MLP) is a type of feedforward artificial neural network that is 

composed of connectionist neurons, also known as perceptrons, in a layered structure. 

An MLP architecture is constructed of 3 components: 1) an input layer to receive the 

information 2) an output layer that makes a decision or prediction about the input and 
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3) one or more hidden layers that allow for feature extraction and modeling of the 

covariates dynamics using nonlinear transformations. According to the universal 

approximation theorem, an MLP with one hidden layer (see Figure 1) can approximate 

any function [24]. 

 

 

Fig 1. Illustration of an MLP with a single hidden layer. Graphical representation of a fully 

connected MLP network with a single hidden layer. The arrows represent the direction of the 

information flow. 

 

Here the model prediction is given by: 

𝑃𝑃(𝑂𝑂|𝑋𝑋�) = 𝑓𝑓(𝑔𝑔 �𝑎𝑎�𝑔𝑔(𝑋𝑋�)��) 

where 𝑓𝑓(𝑥𝑥𝑘𝑘) = exp (𝑥𝑥𝑘𝑘)
∑ exp (𝑥𝑥𝑐𝑐)𝑐𝑐

 the (softmax) output layer activation, k is the predicted class 

and c is any of the possible classes for prediction. 𝑎𝑎(𝑥𝑥) = max (0,𝑥𝑥) denotes the hidden 

layer activation function 𝑔𝑔(𝑋𝑋�) = ∑ 𝜑𝜑𝑖𝑖𝑥𝑥𝑖𝑖𝑀𝑀
𝑖𝑖=0  where M represents the number of nodes in 

the layer. 

The core objective function utilized for the MLP model was binary cross-

entropy: 

𝐽𝐽𝑚𝑚(𝜑𝜑) =  −
1
𝑁𝑁
�𝑦𝑦𝑖𝑖 log(𝑦𝑦𝑖𝑖′) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦𝑖𝑖′)
𝑁𝑁

𝑖𝑖=1

 

where 𝜑𝜑 represents the corresponding model parametrization. Regularization of the 

model was entailed using: 1) L1 regularization, i.e. linear penalization of the model 
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parametrization  2) dropout, i.e. random drop of nodes at each stage of the training 

process with a probabilistic rate DR and consecutive  weighting of each of the nodes’ 

output with (1-DR) in the prediction inference to yield the expected value of the output. 

Several gradient based algorithms were proposed in the recent years as a 

means to interpret deep neural networks, among them as saliency maps, SmoothGrad, 

LRP and others, e.g. [25–27]. In the present work, deep Taylor decomposition was 

chosen as a robust implementation over different data types and neural network 

architectures [28], which is a recommended technique [10]. The overall features 

importance was calculated as the weighted average of the observations with relation 

to the confidence of prediction: 

𝑅𝑅(𝑓𝑓) =
1
𝑁𝑁
�𝜃𝜃𝑖𝑖𝑟𝑟𝑖𝑖(𝑓𝑓)
𝑁𝑁

𝑖𝑖=1

 

 

with 𝜃𝜃𝑖𝑖 = 𝑦𝑦𝑖𝑖 ⋅ 𝑃𝑃�𝑂𝑂�𝑋𝑋𝑖𝑖� + (1 − 𝑦𝑦𝑖𝑖)(1 − 𝑃𝑃�𝑂𝑂�𝑋𝑋𝑖𝑖�) where R(f) is the normalized feature 

rating and ri(f) is the feature contribution for the given MLP model for observation i 

using deep Taylor decomposition. 

 

Models training and validation 

The data were randomly split into training- and test sets with a corresponding 4:1 ratio. To 

target class imbalance the training set was randomly sub-sampled to yield uniform class 

distribution. The models were then tuned using 10-folds cross-validation. The whole process 

was repeated 50 times (shuffles). Table 2 provides a summary of the tuned hyperparameters 

for each model. 
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Model Hyperparameter Range 

LASSO C (inverse of regularizer multiplier) numpy.linspace (0.1,1000,50)   

Elastic 
net 

L1 ratio 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 

Alpha 0.00001, 0.00004, 0.00016, 0.0006, 0.0025, 0.01, 
0.04, 0.16, 0.63, 2.5, 10 

CatBoost Tree depth 2, 4 

Learning rate 0.03, 0.1, 0.3 

Bagging temperature 0.6, 0.8, 1. 

L2 leaf regularization 3, 10, 100, 500 

Leaf estimation iterations 1, 2 

MLP Number of hidden neurons 5, 10, 15, 20 

Learning rate 0.001, 0.01 

Batch size 16, 32 

Dropout rate 0.1, 0.2 

L1 regularization ratio 0.0001, 0.001 

 
Table 2. Summary of hyperparameters tuning. The table details the hyperparameters and 

corresponding range that were tuned for each model in the cross-validation process. 

 

Performance assessment 

The model performance was tested on the test set using receiver-operating-characteristic 

(ROC)-analysis by measuring the area-under-the-curve (AUC). The performance measure 

was taken as the median value over the number of shuffles.  

 

Interpretability assessment 

The absolute values of the calculated feature importance scores were normalized, i.e. scaled 

to unit norm, in order to provide comparable feature rating across models: For each sample 

(each of the 50 shuffles) the calculated importance scores were rescaled to be confined within 



the range [0,1] with their sum equal to one. Then, for each feature the mean and standard 

deviation over the samples (shuffles) were calculated and reported as the final rating 

measures. 

 

Results 

Performance Evaluation 

All models demonstrated comparable performance for 3 months dichotomized mRS prediction 

as measured by AUC values on the test set: GLM 0.82, Lasso 0.82, Elastic-nets 0.79, 

Catboost 0.81 and MLP 0.81. While Catboost showed the highest performance, the difference 

to the other models was very small. For a graphical representation of the models performance 

on the training and test sets please see Figure 2.  

 

 

Fig 2. Graphical representation of the model performance results. The graph illustrates the 

performance of the different models evaluated on the test (blue) and training (orange) sets: generalized 

linear model (GLM), Lasso, Elastic net, Tree Boosting and multilayer perceptron (MLP). The markers 

show showing the median AUC over 50 shuffles and the error bars represent interquartile range (IQR). 

All models showed a similar median AUC around 0.82. The largest difference in performance between 

training and test set, indicating potential overfitting, was observed for the Catboost model.  



 

Interpretability analysis 

The interpretability analysis demonstrated consistent results across models. All explainable 

models rated age and initial NIHSS consistently amongst the most important features. The 

most similar ratings were obtained between the Elastic net and the tree boosting model. The 

lowest variance amongst feature importance was found for the MLP model. A graphical 

representation of the results can be found in Figure 3.  

 

 

Fig 3. Graphical representation of the feature importance. The figure illustrates the features rating 

derived from the model-tailored interpretability methods for generalized linear model (GLM), Lasso, 

Elastic net, Catboost and multilayer perceptron (MLP). For logistic regression techniques the results 

are given in weights, for Catboost in Shap(ley) values and for MLP in deep Taylor values that were 

normalized to the range [0,1]. The bar heights represent means and error bars represent standard 

deviation over samples (shuffles). 

 

 

 

 

 

 



Discussion 

In the present work, we have used a well-characterized clinical stroke outcome prediction 

paradigm to compare the ability of modern and traditional machine learning methods to 

provide explainability of their predictions. In the context of the presented study, both types of 

ML methods (artificial neural nets and tree boosting) showed comparable performance and 

similar interpretability patterns for the most important predictors. We corroborated that modern 

techniques are not necessarily black boxes, but are able to provide a reliable assessment of 

feature importance comparable to their traditional counterparts for clinical prediction models. 

In contrast to other domains, models in healthcare require higher levels of safety given that 

patients’ life and health is at stake [11]. Here, the explainability of the predictions is a highly 

important criterion to enable it. Unfortunately, explainability in the modeling context is an ill-

defined term than can also have other meanings and several other terms such as 

interpretability and transparency are in use, e.g. Roscher et al. [29]. We thus stress that 

standardization of terms is highly needed to facilitate the discussion about explainable AI 

systems. In the presented work, explainability is mainly examined from a clinical point-of-view, 

highlighting the ability of humans to understand which clinical features drive the prediction. 

This is important, as a major goal of clinical predictive modeling is the development of clinical 

decision support systems (CDSS) aiding healthcare professionals in their clinical decision 

making, predicting diagnoses, risks, and outcomes [2]. Here, it is important to keep in mind 

that the requirements for CDSSs go far beyond the model performance [12]. It is established 

that CDSSs for the clinical setting need to exhibit proven safety [12]. A crucial part of the safety 

assessment of ML/AI products is to understand why they do what they do, but, more 

importantly, to understand why and when they might not do what is intended. This is important 

in the light of the increasing awareness of potential biases in models used for healthcare 

discriminating based on for example sex and gender or ethnicity[30]. Another reason is 

automation bias - an established cognitive bias - where users tend to believe what a machine 

is outputting without reflecting on the output [2]. Providing model explainability might mitigate 
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this bias. Thus, it is very likely that future regulatory requirements, e.g. by European MDR and 

US FDA, will include requests for explainability [31]. Here, our results are highly encouraging. 

Modern ML methods that are able to provide the potentially highest performance can be 

combined with methods of explainability and the results are comparable to the established 

methods for traditional techniques. Thus, researchers and developers are no longer faced with 

the potential trade-off between lower performance vs. explainability.  

However, not only regulatory bodies will require explainability. From the physician 

point-of-view, black-box approaches might be unacceptable [12,32]. Clinical guidelines for 

CDSS may therefore profit from explainable predictions. While it has been argued that we 

have accepted similar uncertainty in medical decision making to date and accuracy alone can 

be sufficient [33], we would argue that explainability is a must-have when it can be added 

without limiting the accuracy, as our results suggest. Nonetheless, explainability is a 

supportive tool and is not a substitute for rigorous clinical validation of any CDSS [33]. 

We have focused in our work on two promising techniques, namely artificial neural 

nets and tree boosting. ANNs have shown highly promising results in several areas of 

healthcare such as medical imaging, information extraction from medical texts and electronic 

health records, and combining several types of input into one predictive model [5]. Also tree 

boosting has shown high performance across several medical domains [34]. Tree boosting 

algorithms are also much easier to train than artificial neural nets and their performance is 

quite immune to feature scaling and collinearity issues. Another major advantage of tree 

boosting in healthcare is scalability [35] and thus it is also suited for big data analytics, for 

example data mining from electronic health records (EHR). Here, tree boosting can achieve 

comparable performance to deep learning techniques [36]. As evidenced by the above, tree 

boosting and ANNs represent very versatile and well performing modern ML algorithms in 

healthcare. Thus, our work is of high practicality for future research and for clinical decision 

support development.  

The main focus of our work was the comparison of explainability in a well-characterized 

prediction paradigm and not a comparison of performance. It is not surprising that both the 
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traditional and the modern ML methods achieved comparable performance in our dataset. 

Given the simplicity of the classification problem and the limited dataset, traditional methods 

are sufficient to capture the relationship of the features to the prediction and complex methods 

may easily result in overfitting. It is, however, important to note that interpretability without a 

certain performance level is meaningless: A randomly classifying classifier cannot provide 

reliable feature importance. Thus, the simplicity of the paradigm we chose is well suited to 

compare explainability, as the performance is comparable and feature ratings provide a 

straight-forward result that can be assessed against domain knowledge. Had the performance 

varied considerably, interpretation of the rankings might have been severely impaired. With 

regard to our explainability analysis, several more observations are noteworthy. As there is no 

gold-standard to interpret rankings it can only be performed against domain-knowledge and 

through replication studies. While we know from previous studies that age, NIHSS and 

thrombolysis are important predictors to predict stroke outcome (with age and NIHSS being 

the two strongest) [14–17], it is crucial to include the specifics of the dataset into the 

interpretation. The median NIHSS of the sample was only 3 and only around 31% of patients 

received thrombolysis, meaning that many of the patients had smaller - less serious - stroke 

events. As a consequence, the potential effect of thrombolysis is limited in our sample. Thus 

we would - like in the above mentioned previous works - expect that age and NIHSS drive the 

prediction. And indeed, all rankings gave these two very high importance, with the exception 

of the GLM ranking they were the two most important predictors. The ranking of the lesser 

predictors, however, varied relatively strongly. Interestingly, elastic net provided the ranking 

which is most similar to the one provided by tree boosting. From a domain perspective, the 

most reliable and complete ranking was provided by the tree boosting model, ranking age and 

NIHSS unequivocally on top, with thrombolysis being slightly more important than the other 

features. While the MLP gave age and NIHSS the expected high importance, it ranked the 

presence of diabetes similarly strong. A similar ranking for diabetes can also be observed in 

the logistic regression models. Although diabetes is known to be an important predictor for 

bad stroke outcome [37], a feature importance score that is at the same level as NIHSS and 
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age is unexpected. Another striking difference is the high relative importance given to sex by 

the logistic regression models, which is absent in the rankings provided by the modern 

methods. Taken together, we observed promising consistent findings, where all methods 

corroborated the importance of age and NIHSS for stroke outcome prediction. At the same 

time, we saw distinct differences for diabetes and sex which cannot be explained sufficiently 

at the current time point. In light of these findings, we certainly do not claim that the 

explanations provided by the modern methods should be taken without further validation. Our 

work established that rankings can be obtained for modern machine learning methods and 

that these rankings are compatible with clinical interpretation, especially regarding the main 

predictors. The differences between the rankings, however, must be the subject of further 

research. Here, it must be mentioned that for ANNs multiple other methods than Taylor 

decomposition exist, which should also be further tested in the future - a task which was 

beyond the scope of the current work. 

Given the aforementioned trade-off between performance and explainability, a 

distinction between traditional and modern techniques seems justifiable. It carries with it, 

however, the risk that modern methods are overhyped and used where traditional techniques 

might perform best. As our results suggest that also modern techniques provide explainability, 

we would argue that this distinction is irrelevant. Once all important methods for clinical 

predictive modeling provide validated feature importance we should simply choose the method 

which seems best suited for the prediction task at hand. We believe that this will greatly 

facilitate the development of clinical decision support systems.  

Our work has several limitations. First, we used only one dataset. Here, our results are 

promising, but clearly more analyses are warranted to compare rankings provided by modern 

ML methods with rankings provided by traditional ML methods. Second, to allow comparison 

with traditional methods, we used a paradigm that utilizes only clinical values. We encourage 

future works evaluating explainability provided for other data modalities such as imaging. 

 



Conclusions 

For the first time, we established in an empirical analysis on clinical data that modern machine 

learning methods can provide explainability which is compatible with domain knowledge 

interpretation and traditional method rankings. This is highly encouraging for the development 

of explainable clinical predictive models. Future work should validate the explainability 

methods, further explore the differences between them, and test different predictive modeling 

frameworks including multiple modalities.  
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