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 2 

Abstract 30 

Given the subjective nature of conventional diagnostic methods for post-traumatic stress disorder 31 

(PTSD), an objectively measurable biomarker is highly desirable. Macroscopic neural circuits 32 

measured using magnetoencephalography (MEG) has previously been shown to be indicative of 33 

the PTSD phenotype and severity. In the present study, we employed a machine learning-based 34 

classification framework using MEG neural synchrony to distinguish combat-related PTSD from 35 

trauma-exposed controls. Support vector machine (SVM) was used as the core classification 36 

algorithm. A recursive random forest feature selection step was directly incorporated in the 37 

nested SVM cross validation process (CV-SVM-rRF-FS) for identifying the most important 38 

features for PTSD classification. For the five frequency bands tested, the nested CV-SVM-rRF-39 

FS analysis selected the minimum numbers of edges per frequency that could serve as a PTSD 40 

signature and be used as the basis for SVM modelling. Many of the selected edges have been 41 

reported previously to be core in PTSD pathophysiology, with frequency-specific patterns also 42 

observed. Furthermore, the independent partial least squares discriminant analysis suggested low 43 

bias in the nested CV-SVM-rRF-FS process. The final SVM models built with selected features 44 

showed excellent PTSD classification performance (area-under-curve value up to 0.9). 45 

Testament to its robustness when distinguishing individuals from a heavily-traumatised control 46 

group, these developments for a classification model for PTSD also provide a comprehensive 47 

machine learning-based computational framework for classifying other mental health challenges 48 

using MEG connectome profiles.  49 

  50 
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Introduction 51 

Post-traumatic stress disorder is a chronic psychological injury that is typically brought 52 

about by experiencing or witnessing a life-threatening event (American Psychiatric Association, 53 

1980; Yehuda et al., 2011). The consequences to PTSD include prolonged suffering, distress, 54 

impaired quality of life and increased mortality (Kapfhammer, 2014). The disorder is a major 55 

neuropsychiatric disorder among military personnel, with up to 17% of Canadian Armed Forces 56 

members developing PTSD within the first-year post-deployment (Richardson et al., 2010). The 57 

current gold standard for PTSD diagnosis is based on Diagnostic and Statistical Manual of 58 

Mental Disorders 5th edition (American Psychiatric Association, 2013). However, these protocols 59 

rely heavily on the subjective report of the patients and, given the stigma of a diagnosis in some 60 

groups, or difficulty articulating their symptoms, a clear diagnosis can be difficult. As such, an 61 

objective diagnosis platform is highly desirable.  62 

One critical step of developing such a framework for PTSD is understanding its 63 

psychophysiological and molecular pathology. The underlying neurobiological pathogenesis is 64 

increasingly understood within the context of dysfunctional brain circuits (Rauch, Shin & Phelps, 65 

2006). A mechanism that mediates communication and information processing within and 66 

between brain circuits is neural oscillations and synchrony (Fries, 2015). 67 

Magnetoencephalography (MEG) can image these phenomena non-invasively, and has been used 68 

as an effective research tool for exploring the neural activity associated with various 69 

neurodegenerative and neuropsychological disorders, including depression, bipolar disorder, 70 

mild traumatic brain injury (mTBI) and Alzheimer’s disease (Stam 2010; Vakorin et al., 2016; 71 

Alamian et al., 2017; Koelewijn et al., 2019) as well as PTSD-related functional circuitry 72 

(Badura-Brack et al., 2018a, 2018b; Dunkley et al., 2014; Mišić et al., 2016). At the group level, 73 

neural synchrony can stratify those with PTSD from a heavily-traumatised, but otherwise 74 

matched, control group (Misic et al., 2016), with hippocampal synchrony directly related to 75 

symptom severity across individuals (Dunkley et al., 2014). This suggests synchrony might be a 76 

reliable signature for PTSD identification.  77 

 Rapid advancement in artificial intelligence and machine learning have shown promise in 78 

brain imaging and computational neuroscience. Various Bayesian inference-based machine 79 

learning algorithms have been developed and implemented for neuroimaging signal processing 80 

and temporal brain activity prediction (Wu et al., 2016). In translational research and clinical 81 
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applications, these methods are being actively explored for pre-symptomatic diagnosis, 82 

prognostic prediction, and medical intervention effectiveness prediction (Rizk-Jackson et al., 83 

2011). Neurodegenerative and neuropsychological disorders like Huntington’s disease, mTBI 84 

and bipolar disorder are among the examples with promising results (Rizk-Jackson et al., 2011; 85 

Mitra et al., 2016; Librenza-Garcia et al., 2017).  86 

 The objective here was to implement a machine learning classification modelling 87 

workflow for delineating individuals with PTSD from trauma-exposed, matched control 88 

participants using MEG-derived functional connectomes based on neural synchrony. We 89 

developed a comprehensive machine learning pipeline based on support vector machine (SVM) 90 

and random forest (RF) algorithms, leveraging their classification modelling and feature 91 

selection capabilities, respectively. We recruited combat-related PTSD and trauma-exposed 92 

control participants from the Canadian Armed Forces, data that has been published in previous 93 

studies (Dunkley et al., 2014; Mišić et al., 2016). This design builds upon our established work 94 

and also takes advantage of the similar contexts of traumatic exposure and chronic stress present 95 

across participants from serving in a military context, as compared with those from a civilian 96 

setting. The present study tests the capacity of machine learning in differentiating PTSD from 97 

traumatic-exposure and more generally the potential of this method in distinguishing other 98 

mental health challenges. 99 

 100 

Materials and methods 101 

 Details on the patient group demographics, data acquisition, and imaging analysis can be 102 

found in Dunkley et al., 2014. What follows below in a summary statement. Additional 103 

information regarding data collection, processing and machine learning analysis can be found in 104 

Supporting Information S1. Data acquisition from the 2014 study (Dunkley et al., 2014) was 105 

performed with the written informed consent of each individual and under the approval of the 106 

Research Ethics Board at the Hospital for Sick Children (SickKids) 107 

Participants  108 

23 Canadian Armed Forces soldiers diagnosed with PTSD (all male, mean age = 37.4, 109 

SD = 6.8, age range 22-48) were recruited and had 5 minutes of eyes open MEG resting state 110 
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data recorded. Twenty-one trauma-exposed peers (all male, mean age = 33.05, SD = 5.26, age 111 

range 18-45) who did not develop PTSD were recruited as a control group.  112 

 Inclusion criteria for the PTSD group were: a diagnosis of combat-related PTSD; PTSD 113 

symptoms were present from 1-4 years prior to participation in the study; they were engaged in 114 

regular mental health follow-up; they had moderate or greater severity on the PTSD check list 115 

(PCL>50). All participants in the PTSD group were recruited from one of the Canadian Armed 116 

Forces (CAF) Operational and Trauma Stress Support Centres (OTSSC), which are centres of 117 

excellence for the diagnosis and treatment of trauma-related mental health injuries. Additional 118 

inclusion criteria applied to both groups included: no history of a traumatic brain injury (TBI), 119 

screened by a psychiatrist through a review of their electronic health record, telephone interview, 120 

and administration of the Defence and Veteran's Brain Injury Centre (DVBIC) 3 item screening 121 

tool; English-speaking and able to understand task instructions and give informed consent. 122 

Exclusion criteria included ferrous metal inside the body that might be classified as MRI 123 

contraindications or items that might interfere with MEG data acquisition; presence of implanted 124 

medical devices; seizures or other neurological disorders, or active substance abuse; certain 125 

ongoing medications (anticonvulsants, benzodiazepines, and/or GABA antagonists) known to 126 

directly or significantly influence electroencephalographic (EEG) findings. As this was a 127 

naturalistic sample, however, all PTSD patients were on evidenced-based psychotropic 128 

medication(s), such as selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine 129 

reuptake inhibitors (SNRIs) and Prazosin.  130 

 131 

Magnetoencephalography 132 

 The details of MEG acquisition and analyses can be found in Dunkley et al., 2014; 133 

briefly, we acquired 151 channel MEG on a CTF system at the Hospital for Sick Children. MEG 134 

data were coregistered with an anatomical T1 MRI, and a beamformer was used to recover time 135 

series from 90 regions of the Automated Anatomical Labelling atlas (AAL) (Tzourio-Mazoyer et 136 

al., 2002). The weighted phase lag index (wPLI) was used to determine all pairwise 137 

combinations of seed synchrony (Vinck et al., 2011), with wPLI varying between 0 and 1, and 138 

used as the edge weight in the matrix. We tested canonical frequency ranges, included Theta (4-7 139 

Hz), Alpha (8-14 Hz), Beta (15-30 Hz), Low Gamma (or L. Gamma, 30-80 Hz) and High 140 
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Gamma (or H. Gamma, 80-150 Hz). Evaluating multiple frequency ranges allowed us to test the 141 

relative performance between the bands, predicting that those which showed the largest group 142 

differences previously would provide the greatest accuracy in delineating individual cases here. 143 

 144 

Machine learning downstream data analysis 145 

 A visual representation of the overall workflow for the downstream analysis can be 146 

viewed in Fig. 1. The following core techniques are featured in the method: unsupervised 147 

clustering analyses with hierarchical clustering and principal component analysis (PCA), 148 

univariate statistical analysis, SVM-centric machine learning analysis, as well as partial least 149 

squares discriminant analysis (PLS-DA). Independent from the upcoming machine learning 150 

analysis, a univariate analysis step was used to examine the group differences and identify the 151 

functional edges with statistically significant changes in connectivity. Data with only significant 152 

edges then subject to a machine learning feature selection and modelling process to identify 153 

edges essential for classification and subsequently to build a classification model (Fig. 2). 154 

Similar strategy has been reported elsewhere (Busac et al., 2008). Generally, based on SVM 155 

modelling and the previously described recursive RF feature selection (rRF-FS) process (Zhang 156 

et al., 2016), a nested cross-validation (CV) framework was used for feature selection (CV-157 

SVM-rRF-FS). Subsequently, data with the selected edges were used for the final SVM 158 

classification modelling step. Moreover, PLS-DA was conducted as an independent verification 159 

algorithm for the machine learning feature selection and modelling analysis.   160 
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 161 

Figure 1. Flowchart for the overall process of machine learning MEG synchrony discovery 162 

framework. 163 

 164 

 165 

Figure 2. Flowchart for the workflow of the SVM modelling analysis. 166 
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 167 

Unsupervised clustering analyses were used at various points of the downstream analysis. 168 

Specifically, hierarchical clustering was used to explore the grouping pattern in synchrony 169 

between the participant groups, as well as between the edges; PCA was used to confirm the 170 

functional profile grouping for PTSD and control groups, as well as evaluate data complexity.  171 

The entire downstream data analysis and visualization pipelines were carried out using 172 

our custom developed R packages via UNIX Bash scripting. Detailed description of each step in 173 

the workflow and software tools used can be found in Supporting Information S1.  174 

 175 

Results 176 

Univariate analysis 177 

 A summary of the univariate analysis can be viewed in Table 1. The complete univariate 178 

analysis along with clustering analysis results are included in Supporting Information S1 and 179 

Table S1. Hierarchical clustering was conducted on the data with only the significant edges to 180 

assess the clustering pattern upon univariate analysis feature reduction (Figs 3A, 3B and S3). In 181 

general, reduced data showed improved group clustering results for the five frequency bands. 182 

However, we also observed varying results corresponding to specific frequency bands. 183 

Regarding the Alpha band (Fig. 3A), the clustering result grouped seven participants from the 184 

control group into a major cluster, with the second major cluster containing the rest. Within the 185 

second major cluster, most PTSD participants were grouped together. For H. Gamma band, with 186 

an improved grouping pattern (Fig. 3B), the control group exhibited a higher-level of variance 187 

than the PTSD group, where six control participants where included in the PTSD cluster. 188 

Moreover, the reduced profile in the Theta band managed to mostly separate the PTSD 189 

participants from control (Fig. S3A). As seen in Fig. S3B, the Beta band also showed 190 

substantially improved PTSD and control group clustering with the reduced data where only two 191 

PTSD participants were placed in the control group. For L. Gamma band (Fig. S3C), although 192 

two clusters were identified mostly according to the participant groups, the first major cluster 193 

only included five control participants, with the rest clustered with the PTSD group to form the 194 

second major cluster.  195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 11, 2019. ; https://doi.org/10.1101/19008037doi: medRxiv preprint 

https://doi.org/10.1101/19008037
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 196 

Support vector machine analysis 197 

Using feature-reduced data with only the significant edges identified in the univariate 198 

analysis, nested CV-SVM-rRF-FS and classification modelling was carried out. SVM models 199 

were trained with the randomly partitioned training set and based on the results from the nested 200 

CV featuring rRF-FS. The final SVM models were evaluated by CV step during the modelling 201 

process before assessed by the external test set (from the initial random data partitioning step). 202 

ROC-AUC analysis with the external test set and permutation test with randomized sample label 203 

for training set were used (Figs. 3C, 3D, S4, S5). The permutation test suggested that the 204 

prediction accuracy of the original model was higher than all the permutation models, leading to 205 

a permutation p value at 0.01 across the five frequency bands tested (Fig. S5). A summary of the 206 

rRF-FS results can be viewed in Table 1; and the full list of nested CV-SVM-rRF-FS selected 207 

edges can be viewed in Table 2. A complete description for SVM modelling results can be found 208 

in Supporting Information S1 and Table S2.  209 

Here we use Alpha and H. Gamma as examples to exhibit the FS and SVM modelling 210 

results. For Alpha, the rRF-FS step nested CV process identified 14 edges as the most relevant 211 

features for PTSD-control stratification, including edges between the right superior parietal lobe 212 

and supramarginal gyrus, left middle temporal gyrus and middle temporal pole, as well as left 213 

precentral gyrus and inferior frontal gyrus pars triangularis. The final Alpha band SVM model 214 

was then trained with 31 support vectors with an internal CV accuracy of 0.94. Upon evaluating 215 

with external testing data, the AUC value for the Alpha band was 0.9 (Fig. 3C). For H. Gamma, 216 

19 edges were selected by the rRF-FS step as the most important features, including edges 217 

involving the left amygdala, left hippocampus and thalamus. The nested CV also led to a nested 218 

CV accuracy of 0.78 ± 0.06. For the final model, 36 support vectors were used, leading to an 219 

internal CV accuracy at 0.94. The AUC value was determined at 0.9 for H. Gamma band (Fig. 220 

3D). 221 

 222 

 223 
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 224 

Figure 3. Heatmaps for hierarchical clustering analysis results using only the significant edges 225 

as well as ROC-AUC results for the Alpha and H. Gamma bands.  For heatmaps, dendrograms 226 

show the clusters for participants (columns) and the edges (rows), and z score was plotted. For 227 

ROC, AUC values are shown on the plot. (A) Alpha band heatmap, (B) H. Gamma band 228 

heaptmap, (C) Alpha band ROC, and (D) H. Gamma band ROC.   229 

 230 

  231 
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Principal component analysis 232 

 Serving as an unsupervised clustering and data complexity assessment tool, PCA was 233 

conducted at various points of the downstream data analysis for the five frequency bands tested. 234 

The results can be viewed in Figs. 4 and S6.  For all five frequency bands, when using all edges, 235 

PCA failed to separate the PTSD group from the control participants, whereas the feature-236 

reduced datasets showed substantially improved group clustering. Due to the reduced data 237 

dimensionality for the feature-reduced data sets, the data complexity also decreased 238 

considerably, which is demonstrated by the increase of the percentage variance explained by the 239 

first two PCs in the PCA results.  240 

 241 

 242 

Figure 4. Score plots and biplots (i.e. score plot and loading plot) showing PCA result. For 243 

biplot, the loading plots exhibit the contribution of the edges to clustering pattern. Left column: 244 

Score plots for PCA results from all the edges; middle column: biplots for PCA results from 245 

feature-reduced data with only the significant edges; right column: biplots for PCA results from 246 

data with nested CV-SVM-rRF-FS selected edges. (A) Alpha band and (B) H. Gamma band. 247 

 248 
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Partial least squares discriminant analysis 249 

 PLS-DA results can be viewed in Supporting Information S1, S2, as well as Figs. 5, S7, 250 

S8. 251 

 252 

Figure 5. Score plots and VIP plots showing PLS-DA results. Left column: PLS-DA score plots 253 

showing the supervised clustering pattern on both components upon PLS-DA modelling using the 254 

nested CV-SVM-rRF-FS selected edges; right column:  PLS-DA VIP scores for both model 255 

components for all the nested CV-SVM-rRF-FS selected edges, with the horizontal dashed line 256 

indicating the importance threshold (0.8), and the codes on the x-axis representing the edges. (A) 257 

Alpha band and (B) H. Gamma band. 258 

 259 

Discussion 260 

 Due to the subjective nature of PTSD diagnostics, the overlap of PTSD symptoms with 261 

other disorders (concussion, for example; Garber, Rusu & Zamorski, 2014), and the high 262 

comorbidity of other diseased states, including anxiety and depression (Vun et al., 2018), an 263 

objectively measurable signature for diagnosing PTSD is desirable. Such a platform may work in 264 

concert with the conventional interview and questionnaire-based PTSD diagnostic methods for 265 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 11, 2019. ; https://doi.org/10.1101/19008037doi: medRxiv preprint 

https://doi.org/10.1101/19008037
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

increased accuracy and facilitating individualized medicine. Given the complexity and dynamic 266 

repertoire of neural activity, additional qualifications for an optimal fingerprint include being 267 

non-invasive, neurobiologically-informed, as well as high-throughput – this can be achieved by 268 

leveraging functional neuroimaging in combination with machine learning and artificial 269 

intelligence-inspired approaches.  270 

We considered macroscopic neural circuits based on MEG synchrony as one fingerprint 271 

source. Indeed, MEG has been used to understand human neurophysiology, including a wide 272 

range of neurodegenerative and neuropsychological disorders, such as mTBI, Alzheimer’s 273 

disease, depression and bipolar disorder (Vakorin et al., 2016; Alamian et al., 2017; Koelewijn et 274 

al., 2019). Neural oscillations recovered using MEG are known to be dysfunctional in PTSD and 275 

correlate with primary symptoms and secondary complaints in the disorder (Kolassa et al., 2007; 276 

Dunkley et al., 2014; Mišić et al., 2016; Badura-Brack et al., 2018a, 2018b). Building on this, we 277 

developed a comprehensive machine learning-based pipeline for downstream mining and 278 

modelling of MEG data. We applied our pipeline to a dataset with over 4000 unique edges, 279 

across a number of neurophysiological frequency ranges that are used for multiplexed 280 

communication in the brain. It is also worth noting that the current study featured a traumatized 281 

control group that had experienced similar combat-related stress as the PTSD cohort, which 282 

speaks to the robustness of our machine learning classification framework.  283 

First, unsupervised hierarchical clustering analysis conducted on all the edges showed 284 

that the complete functional profiles failed to exhibit any grouping patterns across any of the 285 

frequency bands. Moreover, the PCA results on the full dataset with all edges were found to be 286 

in complete agreement with the hierarchical clustering analysis, where the score plot exhibited 287 

substantial level of overlap among participants from the two groups. These results are at least 288 

consistent with the similar life experience the participants with PTSD and control participants 289 

had in their military training, deployment and experience of chronic stress and acute trauma 290 

during frontline deployment - it is not surprising that the groups possess similar superficial 291 

functional profiles in neural activity indexed by synchrony.  292 

Severing as an initial feature reduction method, the univariate analysis substantially 293 

reduced the data features for all the frequency bands, with and average number of remaining 294 

features at 4015 (meanSD), a hundred-fold reduction from the original 4005 edges. The 295 
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number of significant edges fluctuated according to frequency band, showing frequency-specific 296 

patterns. For example, L. Gamma band exhibited the least amount of significant edges, 297 

suggesting that the PTSD functional profiles might contain more individual variance across the 298 

two participant groups. H. Gamma included the largest number of significant edges, consistent 299 

with our previous findings where substantial group difference in neural synchrony was identified 300 

for the H. Gamma rhythm (Dunkley et al., 2014; Mišić et al., 2016).  301 

Using the feature-reduced data, the hierarchical clustering and PCA results showed 302 

drastically improved group clustering patterns. Specifically, hierarchical clustering exhibited 303 

almost complete clustering for the two groups in Theta, Beta and L. Gamma. Even though the 304 

Alpha and H. Gamma bands failed to exhibit similar results, the clustering analysis still saw a 305 

clear trend of grouping the participants by diagnostic label. Despite the similarity of the complete 306 

functional profiles when comparing the two groups, our parametric univariate analysis workflow 307 

was able to capture the subtle differences between the two groups. Furthermore, the PCA results 308 

suggested that, with the feature-reduced dataset, the two groups could be mostly separated on the 309 

first PC. Naturally, the data complexity was also greatly reduced for the data with smaller 310 

dimensionality. Consistent with the hierarchical clustering results, PCA also exhibited 311 

frequency-specific patterns. Moreover, PCA showed the groups were separated on PC1, which 312 

explained the most percentage data variance (around 20%), suggesting the patient/control 313 

grouping was the most crucial variable differentiating the data.  314 

The SVM machine learning modelling process was conducted for all five frequency 315 

bands using the univariate feature-reduced data. Our 10-fold nested CV-SVM-rRF-FS process 316 

produced a consensus edge list. This step further reduced the number of edges by more than 50% 317 

across all five frequency bands (Table 1). Despite the substantial reduction in data 318 

dimensionality, clustering performance stayed mostly unchanged from the univariate feature-319 

reduced data, as seen in the PCA results. This indicates that the current machine learning feature 320 

selection strategy was capable of effectively reducing the dimensionality of the data while 321 

preserving the information necessary to separate PTSD participants from the control group. 322 

Moreover, the PLS-DA VIP (variable importance in projection) evaluation independently 323 

confirmed the importance of the selected features. These suggests that our feature selection 324 

process was subject to minimal bias.  325 
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Frequency-specific patterns were observed for the feature selection results. First, the 326 

quantity of the selected edges followed a similar trend as the univariate analysis results, where 327 

Beta and H. Gamma exhibited the most selected features, whereas the Theta and L. Gamma 328 

bands showed the least. Moreover, based on the corresponding univariate analysis results, we 329 

evaluated the directionality distribution for the CV-SVM-rRF-FS selected edges. For example, 330 

Theta showed decreased synchrony for 10 out of 11 total selected edges when comparing the 331 

PTSD group with controls. Interestingly, a previous study of ours revealed an increase in 332 

synchrony in PTSD when compared to controls under the same frequency band, but in a task-333 

dependent manner, during a cognitive flexibility protocol (Dunkley et al., 2015). This suggests 334 

the repertoire of neurophysiological activity in PTSD in this particular frequency channel is 335 

highly dynamic and flexibly modulated by task. Whilst not examined here, it also suggests using 336 

task-induced changes in neural synchrony might be ripe for use as features in machine learning 337 

classification for mental illness, as this highly dynamic neural activity is essentially untapped in 338 

resting state paradigms. In any case, the initial univariate analysis here revealed an equal number 339 

of edges with significant increases and decreases in synchrony, whereas, in addition to 340 

drastically reducing the number of edges, CV-SVM-rRF-FS selected more edges with decreased 341 

connectivity. These confirmed that while the univariate feature reduction identified the edges 342 

with statistical significance at the group level, machine learning was able to further select those 343 

features that were most important for individual classification – the increase/decrease ratio 344 

compared between the two approaches might not always and necessarily be consistent. Machine 345 

learning approaches are ideally suited to recover this granularity. Additionally, the L. Gamma 346 

results were mostly consistent with previously reported overall decreases in a range of metrics in 347 

the gamma frequency band observed from EEG, such as frontal nodal connection strength and 348 

communication efficiency (Lee et al., 2014).  349 

The completely data-driven nested CV-SVM-rRF-FS process was able to extract 350 

information that is in line with our knowledge of the neurobiology of PTSD. For example, Theta 351 

activity involving the right middle frontal gyrus were among the selected edges with decreased 352 

synchrony, including those synchronising with the left insula and right postcentral gyrus. For 353 

Alpha, edges involving the right superior parietal lobe and right supramarginal gyrus, left middle 354 

temporal gyrus and left middle temporal pole, as well as left precentral gyrus and left inferior 355 

frontal gyrus pars triangularis were among the top features differentiating PTSD and controls – 356 
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other studies have previously reported dysfunction involving the superior parietal lobe, middle 357 

temporal gyrus, and left precentral gyrus (Sartory et al., 2013). Additionally, decreased 358 

synchrony between the amygdala and fusiform was found to be important for PTSD 359 

classification, in line with work from Stevens and colleagues where the weakened coupling 360 

between the amygdala and the prefrontal regions was also observed in PTSD conditions (Stevens 361 

et al., 2013). L. Gamma synchrony between the left hippocampus and right middle temporal pole 362 

also proved to be an important feature, consistent with our previous findings where MEG hyper-363 

synchrony was observed at the group-level for PTSD (Dunkley et al., 2014). Additionally, 364 

decreased synchrony between the thalamus and lingual gyrus across multiple frequencies might 365 

be related to previously reported findings reporting structural changes in these regions in PTSD 366 

(Tan et al., 2013). Taken together, PTSD status was identified using our MEG-derived 367 

synchrony and our nested CV-SVM-rRF-FS workflow, highlighting its potential as an 368 

application in this disorder and other neuropsychiatric disease, as well as a tool for hypothesis-369 

generation and mechanistic exploration in MEG studies more generally.  370 

Ultimately, a final SVM classification model was built using the CV-SVM-rRF-FS 371 

selected data. For the five frequency bands tested, the resulted final SVM models were 372 

significant in classifying individuals with PTSD against the trauma-exposed controls according 373 

to the permutation tests using the training set. Using the independent test data set, the 374 

classification performance showed AUC values over 0.8 for all five frequency bands, suggesting 375 

excellent classification accuracy. Notably, Alpha and H. Gamma bands exhibited AUC value of 376 

0.9. Such results were consistent with the previous studies where the Alpha and gamma activity 377 

were associated with PTSD in EEG (Clancy et al., 2017; Moon et al., 2018). Additionally, the 378 

classification capacity of the selected edges was independently tested using PLS-DA modelling. 379 

The results suggested that the high classification capability of the selected edges shown with the 380 

SVM modelling also manifest by the PLS-DA modelling, thus considered universal regardless of 381 

the classification method.  382 

Not withstanding the limitation of a small sample size in the context of machine learning-383 

based data mining, the present study demonstrated the utility of a comprehensive machine 384 

learning pipeline for PTSD classification based off MEG-derived signatures. In summary, the 385 

univariate analysis successfully reduced the data size and considerably improved group 386 

clustering capacity. The subsequent nested CV-SVM-rRF-FS analysis selected the minimal 387 
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number of biologically-relevant features that could serve as potential PTSD signatures and be 388 

used as the basis for SVM modelling. All final SVM models were significant in classification 389 

and exhibited high prediction accuracy, seen by the permutation test and ROC-AUC analysis 390 

results, respectively. Furthermore, PLS-DA VIP analysis suggested low method-derived bias for 391 

the nested CV-SVM-rRF-FS results. Taken together, the current study not only developed a 392 

potential neural circuit marker and an associated classification model for PTSD – it should be 393 

remembered this was tested against control participants who themselves were heavily 394 

traumatised, some with sub-threshold PTSD symptoms - but also described a machine learning-395 

based computational framework for MEG neural circuit fingerprint discovery and development 396 

that could potentially be rolled out to myriad other neuropsychiatric disease.  397 
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Tables 521 

Table 1. Feature reduction results summary. 522 

Frequency 

band 

Significant 

edges  

Increase Decrease rRF-FS selected 

edges 

Increase Decrease 

Theta 30 15 15 11 1 10 

Alpha 40 22 18 14 9 5 

Beta 49 30 19 20 10 10 

L.Gamma 22 7 15 12 4 8 

H.Gamma 59 26 33 19 9 10 

 523 

  524 
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Table 2. Edges selected by the SVM/rRF-FS process. Abbreviations: inf, inferior; sup, superior; 525 

mid, middle; orb, orbital; tri, pars triangularis; oper, operculum; ant, anterior. 526 

Frequency band Region 1 Region 2 

Theta Lingual.L Temporal.Sup.R 

 Frontal.Mid.R Insula.L 

 Frontal.Mid.R Postcentral.R 

 Supp.Motor.Area.L Occipital.Mid.L 

 Frontal.Inf.Tri.R Temporal.Mid.R 

 Fusiform.L SupraMarginal.R 

 Frontal.Inf.Oper.R Thalamus.L 

 Frontal.Inf.Oper.R Lingual.L 

 Frontal.Inf.Tri.R Rectus.R 

 ParaHippocampal.R Parietal.Inf.L 

 Frontal.Mid.L Temporal.Inf.R 

Alpha Parietal.Sup.R SupraMarginal.R 

 Temporal.Mid.L Temporal.Pole.Mid.L 

 Precentral.L Frontal.Inf.Tri.L 

 Frontal.Sup.Medial.R Temporal.Pole.Mid.R 

 Lingual.R Caudate.L 

 Temporal.Pole.Sup.L Temporal.Mid.L 

 Frontal.Inf.Oper.L Olfactory.R 

 Angular.R Caudate.L 

 Frontal.Inf.Oper.L Thalamus.R 

 Olfactory.R Calcarine.L 

 Frontal.Sup.Medial.L Cuneus.L 

 SupraMarginal.R Heschl.R 

 Temporal.Pole.Mid.R Putamen.R 

Beta Precentral.L Frontal.Mid.Orb.L 

 Frontal.Inf.Orb.L Temporal.Inf.L 

 Rectus.L Temporal.Inf.L 

 Amygdala.L Fusiform.L 

 Lingual.R Thalamus.R 
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 Parietal.Sup.L Precuneus.R 

 Rolandic.Oper.L Temporal.Pole.Sup.L 

 Rolandic.Oper.L Putamen.L 

 Rolandic.Oper.R Occipital.Sup.R 

 Cingulum.Ant.R Pallidum.R 

 Rolandic.Oper.L Insula.L 

 Cingulum.Mid.R SupraMarginal.L 

 Frontal.Sup.R Frontal.Sup.Orb.R 

 Frontal.Inf.Tri.R Temporal.Mid.R 

 Frontal.Sup.Medial.L Postcentral.R 

 Frontal.Sup.R Paracentral.Lobule.L 

 Frontal.Mid.L Fusiform.R 

 Hippocampus.R Temporal.Pole.Mid.L 

 Fusiform.L Putamen.R 

L.Gamma Cingulum.Mid.L Caudate.R 

 Hippocampus.L Temporal.Pole.Mid.R 

 Frontal.Mid.Orb.R SupraMarginal.L 

 ParaHippocampal.R Angular.L 

 Occipital.Inf.R Angular.L 

 Frontal.Inf.Tri.L Heschl.R 

 Rectus.R Occipital.Inf.L 

 Frontal.Mid.Orb.L ParaHippocampal.L 

 Frontal.Mid.Orb.L Paracentral.Lobule.L 

 Lingual.L Temporal.Inf.R 

 Olfactory.L SupraMarginal.L 

 Calcarine.L Parietal.Inf.R 

H.Gamma Insula.R Parietal.Inf.R 

 Parietal.Inf.L Pallidum.R 

 Cingulum.Post.R Hippocampus.L 

 Parietal.Inf.L Temporal.Inf.L 

 Cingulum.Mid.L Parietal.Inf.R 

 Cingulum.Post.R ParaHippocampal.L 
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 ParaHippocampal.R Temporal.Pole.Sup.R 

 Temporal.Mid.R Temporal.Pole.Mid.R 

 Occipital.Mid.R Temporal.Pole.Mid.L 

 Frontal.Mid.Orb.L Parietal.Sup.L 

 Rolandic.Oper.R Parietal.Inf.R 

 Frontal.Inf.Orb.L Amygdala.L 

 Supp.Motor.Area.R Temporal.Mid.R 

 SupraMarginal.L Thalamus.R 

 Frontal.Inf.Oper.L Cuneus.L 

 Frontal.Inf.Oper.R Paracentral.Lobule.R 

 Frontal.Sup.R ParaHippocampal.R 

 Precuneus.R Heschl.L 

 527 
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Supporting Information 529 

S1. Supplementary methods and results  530 

S2. PLS-DA results summary 531 

Table S1. Complete results for univariate analysis 532 

Table S2. CV-SMV-rRF-FS results with univariate analysis stats. 533 

Fig. S1. Heatmaps for hierarchical clustering analysis results using all edges for the five 534 

frequency bands. Dendrograms show the clusters for participants (columns) and the edges 535 

(rows). (A) Theta band, (B) Alpha band, (C) Beta band, (D) L. Gamma band, and (E) H. Gamma 536 

band.  537 

Fig. S2. The volcano plots show the edges with significant changes in synchonry (red dots). 538 

Horizontal dashed line indicates the p value threshold (0.01) while the vertical line divides 539 

directionality (i.e. increases or decreases). (A) Theta band, (B) Alpha band, (C) Beta band, (D) L. 540 

Gamma band, and (E) H. Gamma band. 541 

Fig. S3. Heatmaps for hierarchical clustering analysis results using only the significant edges for 542 

the Theta (A), Beta (B) and L. Gamma (C) bands. Z score is plotted for the heatmaps. 543 

dendrograms show the clusters for participants (columns) and the edges (rows). 544 

Fig. S4. ROC-AUC results for the Theta (A), Beta (B) and (C) L. Gamma bands. AUC values 545 

are shown in the ROC plots. 546 

Fig. S5. SVM model evaluation using permutation test. Permutation results showing the 547 

percentage accuracy of both the final SVM model and the permutation models, with dashed line 548 

indicating the final model accuracy level. Numbers on the x-axis are the models, with 0 549 

representing the final SVM model. (A) Theta band, (B) Alpha band, (C) Beta band, (D) L. 550 

Gamma band, and (E) H. Gamma band. 551 

Fig. S6. Score plots and biplots (i.e. score plot and loading plot) showing PCA result. For biplot, 552 

the loading plots exhibit the contribution of the edges to clustering pattern. Left column: Score 553 

plots for PCA results from all the edges; middle column: biplots for PCA results from feature-554 

reduced data with only the significant edges; right column: biplots for PCA results from data 555 

with nested CV-SVM-rRF-FS selected edges. (A) Theta band, (B) Beta band and (C) L. Gamma 556 

band. 557 
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Fig. S7.  Score plots and VIP plots showing PLS-DA results. Left column: PLS-DA score plots 558 

showing the supervised clustering pattern on both components upon PLS-DA modelling using 559 

the nested CV-SVM-rRF-FS selected edges; right column:  PLS-DA VIP scores for both model 560 

components for all the nested CV-SVM-rRF-FS selected edges, with the horizontal dashed line 561 

indicating the importance threshold (0.8), and the codes on the x-axis representing the edges. (A) 562 

Theta band, (B) Beta band and (C) L. Gamma band. 563 

Fig. S8. ROC-AUC and permutation for the PLS-DA models. Left column: ROC curve with 564 

AUC values for both components. Right column: Permutation test results showing RMSEP (root 565 

mean squared error of prediction) values for both final and permutation PLS-DA models for both 566 

participant groups; numbers on the x-axis are the models, with 0 representing the final SVM 567 

model. (A) Theta band, (B) Alpha band, (C) Beta band, (D) L. Gamma band, and (E) H. Gamma 568 

band. 569 
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